[back] [prev] [next] [index] [root]
EltReconstruct
Lifts an element from a modulo m approximation to
an element with rational coefficients
Syntax:
alpha := EltReconstruct (gamma, m);
false or algebraic element |
alpha |
|
algebraic element |
gamma |
|
integer |
m |
|
See also: RationalReconstruct
Description:
Given an element \gamma = c_1omega_1+ … +c_nomega_n in an order
over Z with coefficients less than the positive integer m, the
function
EltReconstruct computes an element \alpha in the same order
which is equal to the element q_1omega_1+ … +q_nomega_n, where
the q_i are the reconstructed rationals from c_i and m
(q_i = frac{a_i}{b_i} such that a_i \equiv b_i c_i \bmod m and
0 \le |a_i|,b_i < \sqrt{frac{m}{2}}, b_i \neq 0, if such a pair
exists).
Otherwise false is returned.
Example:
kash> O := Order(Z,2,3);
Generating polynomial: x^2 - 3
kash> gamma := Elt(O,[17,4]);
[17, 4]
kash> EltReconstruct(gamma,49);
> [2, 12] / 3
<- back[back] [prev] [next] [index] [root]