[back] [prev] [next] [index] [root]
EltIndex
Computes the index of an equation suborder of a given order
Syntax:
index := EltIndex (alpha [,Z]);
integer |
index |
|
algebraic integer |
alpha |
|
ring of integers |
Z |
|
See also: OrderIndexFormEquation
Description:
Let o be an arbitrary order over Z and let \alpha be an
algebraic integer from o. The EltIndex function
returns the module index (o:Z[\alpha]). If the index
is infinite, 0 is returned.
In the relative case, Z has to be the argument that determines
the ring of the index.
Example:
Compute the index (Z[\sqrt[4]{5}]:Z[\sqrt[4]{5}+\sqrt{5}]):
kash> o := Order(Z,4,5);
Generating polynomial: x^4 - 5
kash> a := Elt(o,[0,1,1,0]);
[0, 1, 1, 0]
kash> EltIndex(a);
> 21
<- back[back] [prev] [next] [index] [root]