[back] [prev] [next] [index] [root]

 


EltIndex

Computes the index of an equation suborder of a given order

Syntax:

index := EltIndex (alpha [,Z]);

integer
  index  
algebraic integer
  alpha  
ring of integers
  Z  

See also:  OrderIndexFormEquation

Description:

Let o be an arbitrary order over Z and let \alpha be an algebraic integer from o. The EltIndex function returns the module index (o:Z[\alpha]). If the index is infinite, 0 is returned. In the relative case, Z has to be the argument that determines the ring of the index.


Example:

Compute the index (Z[\sqrt[4]{5}]:Z[\sqrt[4]{5}+\sqrt{5}]):

kash> o := Order(Z,4,5);
Generating polynomial: x^4 - 5

kash> a := Elt(o,[0,1,1,0]);
[0, 1, 1, 0]
kash> EltIndex(a);
> 21


<- back[back] [prev] [next] [index] [root]