[back] [prev] [next] [index] [root]

 


EltExcepUnitOrbit

Computes the orbit of an exceptional unit.

Syntax:

L := EltExcepUnitOrbit(epsilon);

list
  L  
algebraic element
  epsilon  

See also:  OrderUnitsExcep

Description:

Computes the orbit of an exceptional unit \varepsilon. The orbit is given by \left{ \varepsilon, quad frac{1}{\varepsilon}, quad 1-\varepsilon, quad frac{1}{1-\varepsilon}, quad frac{\varepsilon-1}{\varepsilon}, quad frac{\varepsilon}{\varepsilon-1} right}. If \varepsilon is not an exceptional unit, an error message is returned.


Example:

Compute the orbit of 1+zeta_7 \in Z[zeta_7]:

kash> o := Order(Poly(Zx,[1,1,1,1,1,1,1]));
Generating polynomial: x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

kash> EltExcepUnitOrbit(Elt(o,[1,1,0,0,0,0]));
> [ [0, -1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, -1, -1, -1, -1, -1], 
  [0, -1, 0, -1, 0, -1], [1, 1, 0, 1, 0, 1], [1, 1, 1, 1, 1, 1] ]


<- back[back] [prev] [next] [index] [root]