[back] [prev] [next] [index] [root]
EltExcepUnitOrbit
Computes the orbit of an exceptional unit.
Syntax:
L := EltExcepUnitOrbit(epsilon);
| list |
L |
|
| algebraic element |
epsilon |
|
See also: OrderUnitsExcep
Description:
Computes the orbit of an exceptional unit
\varepsilon. The orbit is given by
\left{ \varepsilon, quad
frac{1}{\varepsilon}, quad
1-\varepsilon, quad
frac{1}{1-\varepsilon}, quad
frac{\varepsilon-1}{\varepsilon}, quad
frac{\varepsilon}{\varepsilon-1} right}.
If \varepsilon is not an exceptional unit, an error message is
returned.
Example:
Compute the orbit of 1+zeta_7 \in Z[zeta_7]:
kash> o := Order(Poly(Zx,[1,1,1,1,1,1,1]));
Generating polynomial: x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
kash> EltExcepUnitOrbit(Elt(o,[1,1,0,0,0,0]));
> [ [0, -1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, -1, -1, -1, -1, -1],
[0, -1, 0, -1, 0, -1], [1, 1, 0, 1, 0, 1], [1, 1, 1, 1, 1, 1] ]
<- back[back] [prev] [next] [index] [root]