[back] [prev] [next] [index] [root]

 


EltCon

Computes the conjugates of an algebraic number.

Syntax:

v := EltCon(alpha);
c := EltCon(alpha,i);

complex matrix
  v  
complex number
  c  
algebraic element
  alpha  
integer
  i  

See also:  EltAbs, OrderSig

Description:

Let a be an algebraic number whose underlying order is of degree n over Z.\bigskip EltCon(a) returns the complex matrix (a^{(1)}, … ,a^{(n)}).\medskip EltCon(a,i) returns the complex number a^{(i)}.


Example:


kash> O := Order (Z,3,2);
Generating polynomial: x^3 - 2

kash> rho := Elt(O,[0,1,0]);
[0, 1, 0]
kash> EltCon(rho);
[1.259921049894873164767210607278228350570251464701 -0.62996052494743658238360\
53036391141752851257323509024 + 1.09112363597172140356007261418980888132587333\
874*i -0.6299605249474365823836053036391141752851257323509024 - 1.091123635971\
72140356007261418980888132587333874*i]
kash> a1 := EltCon (rho,1);
1.259921049894873164767210607278228350570251464701
kash> a2 := EltCon (rho,2);
-0.6299605249474365823836053036391141752851257323509024 + 1.091123635971721403\
56007261418980888132587333874*i
kash> a3 := EltCon (rho,3);
-0.6299605249474365823836053036391141752851257323509024 - 1.091123635971721403\
56007261418980888132587333874*i
kash> a1^3;
> 1.999999999999999999999999999999999999999999999998


<- back[back] [prev] [next] [index] [root]