[back] [prev] [next] [index] [root]

 


EltAutomorphism

Applies an automorphism to an algebraic number.

Syntax:

L := EltAutomorphism (a);
c := EltAutomorphism (a,i);

list
  L  
algebraic element
  c  
algebraic element
  a  
integer
  i  

See also:  OrderAutomorphisms

Description:

Let F be a normal number field with Q-automorphisms \sigma_1, … ,\sigma_n. Let a be an algebraic number in F.\bigskip EltAutomorphism(a) returns the list L = { \sigma_1(a), … ,\sigma_n(a)}. Each entry of L is an algebraic number whose underlying order is the same order as a is defined over.\medskip EltAutomorphism(a,i) returns the algebraic number \sigma_i(a). Note that \sigma_1 is always the identity mapping of F. \bigskip Before calling EltAutomorphism, the automorphisms \sigma_1, … ,\sigma_n of F must be computed by the OrderAutomorphisms routine.


Example:

Consider the normal field Q(\sqrt[6]{-108}) :

kash> o := Order(Z,6,-108);
Generating polynomial: x^6 + 108

kash> OrderAutomorphisms(o);;
kash> a := Elt(o,[1,2,3,4,5,6]);
[1, 2, 3, 4, 5, 6]
kash> A := EltAutomorphism(a);
[ [1, 2, 3, 4, 5, 6], [12, -552, 630, 48, -28, -39] / 12, 
  [12, 528, -666, 48, -32, -33] / 12, [1, -2, 3, -4, 5, -6], 
  [12, 552, 630, -48, -28, 39] / 12, [12, -528, -666, -48, -32, 33] / 12 ]
kash> A[1]+A[2]+A[3]+A[4]+A[5]+A[6];
6
kash> EltTrace(a);
6
kash> EltAutomorphism(a,1);
> [1, 2, 3, 4, 5, 6]


<- back[back] [prev] [next] [index] [root]