[back] [prev] [next] [index] [root]

 


AlffRoots

Computes the Puiseux expansions in T^{-1/e} of the roots of the defining polynomial of a global function field F/FF_q(T).

Syntax:

L := AlffRoots(F);

list
  L  
global function field
  F  

See also:  AlffRootParams, InftyVal

Description:

If the infinite place \infty of k(T) is tamely ramified in F, then all roots of the defining polynomial f of F/FF_q(T) can be expanded in T^{-1/e}. The function returns a list L:=[rho_{1,1}, … ,rho_{1,e_1 f_1},rho_{2,1}, … , rho_{s,e_s f_s}], where rho_{i,j}\inFF_{q^d}\langle T^{-1/e_i}rangle\subset FF_{q^d}\langle T^{-1/e}rangle, (1 <= j <= e_i f_i), are the root expansions at the s infinite places above \infty (the e_i and f_i are the ramification indices and residue degrees of these places, e is the lcm of the e_i).


Example:

Compute all roots of y^3+T^4+1 over FF_25:

kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> AlffRoots(F);
> [ 4*(T^(-1/3))^-4 + 3*(T^(-1/3))^8 + 4*(T^(-1/3))^20 + 2*(T^(-1/3))^56 + 4*(T^\
(-1/3))^68 + 2*(T^(-1/3))^80 + 2*(T^(-1/3))^116 + 4*(T^(-1/3))^128 + 2*(T^(-1/\
3))^140 + 4*(T^(-1/3))^176 + 3*(T^(-1/3))^188 + 4*(T^(-1/3))^200 + 4*(T^(-1/3)\
)^296 + 3*(T^(-1/3))^308 + 4*(T^(-1/3))^320 + 2*(T^(-1/3))^356 + 4*(T^(-1/3))^\
368 + 2*(T^(-1/3))^380 + 2*(T^(-1/3))^416 + 4*(T^(-1/3))^428 + 2*(T^(-1/3))^44\
0 + 4*(T^(-1/3))^476 + 3*(T^(-1/3))^488 + 4*(T^(-1/3))^500 + 2*(T^(-1/3))^1496\
 + O((T^(-1/3))^1498), 
  w^20*(T^(-1/3))^-4 + w^2*(T^(-1/3))^8 + w^20*(T^(-1/3))^20 + w^14*(T^(-1/3))\
^56 + w^20*(T^(-1/3))^68 + w^14*(T^(-1/3))^80 + w^14*(T^(-1/3))^116 + w^20*(T^\
(-1/3))^128 + w^14*(T^(-1/3))^140 + w^20*(T^(-1/3))^176 + w^2*(T^(-1/3))^188 +\
 w^20*(T^(-1/3))^200 + w^20*(T^(-1/3))^296 + w^2*(T^(-1/3))^308 + w^20*(T^(-1/\
3))^320 + w^14*(T^(-1/3))^356 + w^20*(T^(-1/3))^368 + w^14*(T^(-1/3))^380 + w^\
14*(T^(-1/3))^416 + w^20*(T^(-1/3))^428 + w^14*(T^(-1/3))^440 + w^20*(T^(-1/3)\
)^476 + w^2*(T^(-1/3))^488 + w^20*(T^(-1/3))^500 + w^14*(T^(-1/3))^1496 + O((T\
^(-1/3))^1498), 
  w^4*(T^(-1/3))^-4 + w^10*(T^(-1/3))^8 + w^4*(T^(-1/3))^20 + w^22*(T^(-1/3))^\
56 + w^4*(T^(-1/3))^68 + w^22*(T^(-1/3))^80 + w^22*(T^(-1/3))^116 + w^4*(T^(-1\
/3))^128 + w^22*(T^(-1/3))^140 + w^4*(T^(-1/3))^176 + w^10*(T^(-1/3))^188 + w^\
4*(T^(-1/3))^200 + w^4*(T^(-1/3))^296 + w^10*(T^(-1/3))^308 + w^4*(T^(-1/3))^3\
20 + w^22*(T^(-1/3))^356 + w^4*(T^(-1/3))^368 + w^22*(T^(-1/3))^380 + w^22*(T^\
(-1/3))^416 + w^4*(T^(-1/3))^428 + w^22*(T^(-1/3))^440 + w^4*(T^(-1/3))^476 + \
w^10*(T^(-1/3))^488 + w^4*(T^(-1/3))^500 + w^22*(T^(-1/3))^1496 + O((T^(-1/3))\
^1498) ]


<- back[back] [prev] [next] [index] [root]