[back] [prev] [next] [index] [root]
a := AlffResFieldEltLift(b, P);
alff element | a |
in o_P |
field element | b |
value of a at P to be lifted |
alff place | P |
See also: AlffResFieldEltLift, AlffELtToResField, AlffEltValuation
kash> AlffInit(FF(5,3)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> F := Alff(y^3+T^3*y+T); Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(5^3) Variables: T kash> P := AlffPlaceSplit(F, T+1)[1]; Alff place < [ T + 1, 0, 0 ], [ 3, 1, 0 ] > kash> AlffPlaceResField(P); Finite field of size 5^3 kash> of := AlffOrderMaxFinite(F); Finite maximal order of Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(5^3) Variables: T kash> a := AlffEltToResField(AlffElt(of,T),P); 4 kash> AlffResFieldEltLift(a,P); [ 4, 0, 0 ] kash> p := AlffPlaceSplit(F, 1/T)[1]; Alff place < [ 1/T, 0, 0 ], [ w^48/T, (w^102*T + w^5)/T, (w^18*T + w^82)/T ] > kash> AlffPlaceResField(p); Finite field of size 5^3 kash> oi := AlffOrderMaxInfty(F); Infinite maximal order of Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(5^3) Variables: T given by transformation matrix [1/T 0 0] [ 0 1/T 0] [ 0 0 1] with denominator 1/T kash> b := AlffEltToResField(AlffElt(oi,1/T),p); 0 kash> AlffResFieldEltLift(b,p); [ 0, 0, 0 ] kash> AlffInit(Q); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> F := Alff(y^3+T^3*y+T); Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over Rational Field Variables: T kash> P := AlffPlaceSplit(F, T+1)[1]; Alff place < [ T + 1, 0, 0 ] > kash> AlffPlaceResField(P); Generating polynomial: x^3 - x - 1 kash> of := AlffOrderMaxFinite(F); Finite maximal order of Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over Rational Field Variables: T kash> a := AlffEltToResField(AlffElt(of,2),P); 2 kash> AlffResFieldEltLift(a,P); [ 2, 0, 0 ] kash> p := AlffPlaceSplit(F, 1/T)[1]; Alff place < [ 1/T, 0, 0 ], [ -13/T, (11/3*T - 35)/T, (-3/2*T + 32/3)/T ] > kash> AlffPlaceResField(p); Rational Field kash> oi := AlffOrderMaxInfty(F); Infinite maximal order of Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over Rational Field Variables: T given by transformation matrix [1/T 0 0] [ 0 1/T 0] [ 0 0 1] with denominator 1/T kash> b := AlffEltToResField(AlffElt(oi,1/T),p); 0 kash> AlffResFieldEltLift(b,p); > [ 0, 0, 0 ]
<- back[back] [prev] [next] [index] [root]