[back] [prev] [next] [index] [root]

 


AlffResFieldEltLift

Lifts a residue field element.

Syntax:

a := AlffResFieldEltLift(b, P);

alff element
  a  
in o_P
field element
  b  
value of a at P to be lifted
alff place
  P  

See also:  AlffResFieldEltLift, AlffELtToResField, AlffEltValuation

Description:

Let F/k be an algebraic function field and P be a place of F/k. If o_P is the ring of algebraic functions defined at P then k(P) := o_P / P is the residue class field of P. For b \in k(P) this function returns a \in o_P such that a(P) = b. Constants are lifted to constants.


Example:


kash> AlffInit(FF(5,3));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^3*y+T);
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(5^3)
Variables: T

kash> P := AlffPlaceSplit(F, T+1)[1];
Alff place < [ T + 1, 0, 0 ], [ 3, 1, 0 ] >
kash> AlffPlaceResField(P);
Finite field of size 5^3
kash> of := AlffOrderMaxFinite(F);
Finite maximal order of 
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(5^3)
Variables: T

kash> a := AlffEltToResField(AlffElt(of,T),P);
4
kash> AlffResFieldEltLift(a,P);
[ 4, 0, 0 ]
kash> p := AlffPlaceSplit(F, 1/T)[1];
Alff place < [ 1/T, 0, 0 ], [ w^48/T, (w^102*T + w^5)/T, (w^18*T + w^82)/T ] >
kash> AlffPlaceResField(p);
Finite field of size 5^3
kash> oi := AlffOrderMaxInfty(F);
Infinite maximal order of 
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(5^3)
Variables: T
given by transformation matrix
[1/T   0   0]
[  0 1/T   0]
[  0   0   1]
with denominator 1/T
kash> b := AlffEltToResField(AlffElt(oi,1/T),p);
0
kash> AlffResFieldEltLift(b,p);
[ 0, 0, 0 ]

kash> AlffInit(Q);
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^3*y+T);
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over Rational Field
Variables: T

kash> P := AlffPlaceSplit(F, T+1)[1];
Alff place < [ T + 1, 0, 0 ] >
kash> AlffPlaceResField(P);
Generating polynomial: x^3 - x - 1

kash> of := AlffOrderMaxFinite(F);
Finite maximal order of 
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over Rational Field
Variables: T

kash> a := AlffEltToResField(AlffElt(of,2),P);
2
kash> AlffResFieldEltLift(a,P);
[ 2, 0, 0 ]
kash> p := AlffPlaceSplit(F, 1/T)[1];
Alff place < [ 1/T, 0, 0 ], [ -13/T, (11/3*T - 35)/T, (-3/2*T + 32/3)/T ] >
kash> AlffPlaceResField(p);
Rational Field

kash> oi := AlffOrderMaxInfty(F);
Infinite maximal order of 
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over Rational Field
Variables: T
given by transformation matrix
[1/T   0   0]
[  0 1/T   0]
[  0   0   1]
with denominator 1/T
kash> b := AlffEltToResField(AlffElt(oi,1/T),p);
0
kash> AlffResFieldEltLift(b,p);
> [ 0, 0, 0 ]


<- back[back] [prev] [next] [index] [root]