[back] [prev] [next] [index] [root]

 


AlffPuiseuxCoeff

Returns the finite constant field of the Puiseux series field into which all completions of a global function field with respect to the infinite valuations can be embedded.

Syntax:

k := AlffPuiseuxCoeff(F);

finite field
  k  
global function field
  F  

See also:  AlffRoots

Description:

Let f(T,y) be a generating irreducible equation for a global function field F, of degree n and separable in y. Let d be a minimal positive integer such that all n distinct roots of f(T,y) in y can be represented in FF_{q^d}((T^{-1/e})), where e is the least common multiple of the ramification indices of the infinite places and p \nmid e. The function returns FF_{q^d}.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> AlffRoots(F);;
kash> AlffPuiseuxCoeff(F);
> Finite field of size 5^2


<- back[back] [prev] [next] [index] [root]