[back] [prev] [next] [index] [root]

 


AlffPlacesDegOne

Computes all places of degree one of a global function field.

Syntax:

L := AlffPlacesDegOne(F);

global function field
  F  
list
  L  
of alff places of degree 1

See also:  AlffPlacesDegOneNum, AlffPlaces, AlffPlacesNum, AlffPlaceRandom

Description:

This function returns a list of all places of degree one of a global function field F. The constant field of definition should be the exact constant field of F since the degree is taken over the former.


Example:


kash> AlffInit(FF(2, 3));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^3*y+T);
"Defining global variables: F, o, oi, one"
kash> AlffPlacesDegOne(F);
[ Alff place < [ 1/T, 0, 0 ], [ w^3/T, w, (w^2*T + w^6)/T ] >, 
  Alff place < [ 1/T, 0, 0 ], [ (T + w)/T, (w*T + w^4)/T, (T + w^6)/T ] >, 
  Alff place < [ T, 0, 0 ], [ 0, 1, 0 ] >, 
  Alff place < [ T + w, 0, 0 ], [ 1, 1, 0 ] >, 
  Alff place < [ T + w, 0, 0 ], [ w^2, 1, 0 ] >, 
  Alff place < [ T + w, 0, 0 ], [ w^6, 1, 0 ] >, 
  Alff place < [ T + w^2, 0, 0 ], [ 1, 1, 0 ] >, 
  Alff place < [ T + w^2, 0, 0 ], [ w^4, 1, 0 ] >, 
  Alff place < [ T + w^2, 0, 0 ], [ w^5, 1, 0 ] >, 
  Alff place < [ T + w^3, 0, 0 ], [ w^2, 1, 0 ] >, 
  Alff place < [ T + w^3, 0, 0 ], [ w^3, 1, 0 ] >, 
  Alff place < [ T + w^3, 0, 0 ], [ w^5, 1, 0 ] >, 
  Alff place < [ T + w^4, 0, 0 ], [ 1, 1, 0 ] >, 
  Alff place < [ T + w^4, 0, 0 ], [ w, 1, 0 ] >, 
  Alff place < [ T + w^4, 0, 0 ], [ w^3, 1, 0 ] >, 
  Alff place < [ T + w^5, 0, 0 ], [ w, 1, 0 ] >, 
  Alff place < [ T + w^5, 0, 0 ], [ w^5, 1, 0 ] >, 
  Alff place < [ T + w^5, 0, 0 ], [ w^6, 1, 0 ] >, 
  Alff place < [ T + w^6, 0, 0 ], [ w^3, 1, 0 ] >, 
  Alff place < [ T + w^6, 0, 0 ], [ w^4, 1, 0 ] >, 
  Alff place < [ T + w^6, 0, 0 ], [ w^6, 1, 0 ] >, 
  Alff place < [ T + 1, 0, 0 ], [ w, 1, 0 ] >, 
  Alff place < [ T + 1, 0, 0 ], [ w^2, 1, 0 ] >, 
  Alff place < [ T + 1, 0, 0 ], [ w^4, 1, 0 ] > ]


<- back[back] [prev] [next] [index] [root]