[back] [prev] [next] [index] [root]

 


AlffPlaceBeta

Return an inverse prime element for a place.

Syntax:

b := AlffPlaceBeta(P);

alff element
  b  
alff place
  P  

See also:  AlffEltValuation, AlffPlacePrimeElt, AlffPlaceMin

Description:

Let a finite (infinite) place frak{P} of the algebraic function field F/k be given and let p be the minimum of frak{P}. This function returns an element \beta \in F such that \beta / p is integral at all finite (infinite) places different from frak{P} and satisfies v_{frak{P}}(\beta / p) = -1.


Example:


kash> AlffInit(FF(2,1));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> E := Alff(y^2+y+T^3+T);
Algebraic function field defined by
.1^2 + .1 + .2^3 + .2
over
Univariate rational function field over GF(2)
Variables: T

kash> P := AlffPlacesDegOne(E)[2];
Alff place < [ T, 0 ], [ 0, 1 ] >
kash> p := AlffPlaceMin(P);
T
kash> b := AlffPlaceBeta(P);
[ 1, 1 ]
kash> AlffDivisor(b/p);
> Alff divisor
[ [ Alff place < [ T, 0 ], [ 0, 1 ] >, -1 ],
[ Alff place < [ T + 1, 0 ], [ 1, 1 ] >, 2 ],
[ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, -1 ] ]



<- back[back] [prev] [next] [index] [root]