[back] [prev] [next] [index] [root]

 


AlffOrderReduce

Given an order of a global function field, the function returns an order with a 0-reduced basis.

Syntax:

o2 := AlffOrderReduce(o1);

global function field order
  o2  
global function field order
  o1  

See also:  AlffOrderL0, AlffOrderBasisValues

Description:

The infinite place of k(T) has to be tamely ramified in F. See Scho1 for definitions and algorithms.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^13*y^2+T^4+T+1);
"Defining global variables: F, o, oi, one"
kash> o;
Finite maximal order of 
Algebraic function field defined by
.1^3 + .1^2*.2^13 + .2^4 + .2 + 1
over
Univariate rational function field over GF(5^2)
Variables: T
given by transformation matrix
[   T + 3        0        3]
[       0    T + 3        4]
[       0        0        1]
with denominator T + 3
kash> AlffOrderReduce(o);
> Finite maximal order of 
Algebraic function field defined by
.1^3 + .1^2*.2^13 + .2^4 + .2 + 1
over
Univariate rational function field over GF(5^2)
Variables: T
given by transformation matrix
[               T + 3              3*T + 4              4*T + 3]
[                   0        T^14 + 3*T^13    3*T^14 + T^13 + 4]
[                   0                T + 3              3*T + 1]
with denominator T + 3


<- back[back] [prev] [next] [index] [root]