[back] [prev] [next] [index] [root]

 


AlffOrderMaxInfty

Computes a maximal order of an algebraic function field.

Syntax:

o := AlffOrderMaxInfty(F);

algebraic function field order
  o  
algebraic function field
  F  

See also:  AlffOrderMaxFinite, AlffOrderMaximal, Alff, AlffElt

Description:

Let R be the valuation ring of the degree valuation of k(T), that is R = {g/h | g,h\in k[T], h\neq 0, \deg(g) <= \deg(h)}, and let F/k(T) be an algebraic function field. This function computes the R-maximal order of F. It is the integral closure of R in F.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^4+1);
Algebraic function field defined by
.1^3 + .2^4 + 1
over
Univariate rational function field over GF(5^2)
Variables: T

kash> AlffOrderMaxInfty(F);
> Infinite maximal order of 
Algebraic function field defined by
.1^3 + .2^4 + 1
over
Univariate rational function field over GF(5^2)
Variables: T
given by transformation matrix
[1/T   0   0]
[  0 1/T   0]
[  0   0   1]
with denominator 1/T


<- back[back] [prev] [next] [index] [root]