[back] [prev] [next] [index] [root]

 


AlffOrderL0

Returns a list of 0-reduced basis elements of an order of a global function field with their B^*-values.

Syntax:

L := AlffOrderL0(o);

list
  L  
global function field order
  o  

See also:  AlffOrderBasisValues, AlffOrderReduce

Description:

For the FF_q[T]-order o, the function returns a 0-reduced FF_q[T]-basis b_1, … b_n\in o with their B^*-values, i.e. L:=[b_1, B^*(b_1), … ,b_n,B^*(b_n)]. Here n denotes the FF_q[T]-rank of o. The infinite place of k(T) has to be tamely ramified in F. See AlffEltBstar() for the definition of B^* and Scho1 for the definition of 0-reduced and for algorithms.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> AlffOrderL0(o);
> [ [ 1, 0, 0 ], 0, [ 0, 1, 0 ], 4/3, [ 0, 0, 1 ], 8/3 ]


<- back[back] [prev] [next] [index] [root]