[back] [prev] [next] [index] [root]
AlffOrderL0
Returns a list of 0-reduced basis elements of an order
of a global function field with their B^*-values.
Syntax:
L := AlffOrderL0(o);
list |
L |
|
global function field order |
o |
|
See also: AlffOrderBasisValues, AlffOrderReduce
Description:
For the FF_q[T]-order o, the function returns a 0-reduced
FF_q[T]-basis b_1, … b_n\in o with their B^*-values,
i.e.
L:=[b_1, B^*(b_1), … ,b_n,B^*(b_n)].
Here n denotes the FF_q[T]-rank of o.
The infinite place of k(T) has to be tamely ramified in F.
See AlffEltBstar() for the definition of B^* and
Scho1 for the definition of 0-reduced and for
algorithms.
Example:
kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> AlffOrderL0(o);
> [ [ 1, 0, 0 ], 0, [ 0, 1, 0 ], 4/3, [ 0, 0, 1 ], 8/3 ]
<- back[back] [prev] [next] [index] [root]