[back] [prev] [next] [index] [root]
d := AlffOrderIndex(o);
element | d |
of the coefficient ring |
algebraic function field order | o |
See also: AlffOrderMaxFinite, AlffOrderMaxInfty
kash> AlffInit(FF(7,1)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> AlffOrders(y^3+T^3*y+T); "Defining global variables: F, o, oi, one" kash> o := AlffOrderMaxFinite(F); Finite maximal order of Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(7) Variables: T given by transformation matrix [T^3 + T^2 + 5*T + 6 0 4*T^2 + 6*T + 3] [ 0 T^3 + T^2 + 5*T + 6 3*T^2 + 5*T + 3] [ 0 0 1] with denominator T^3 + T^2 + 5*T + 6 kash> p := AlffOrderIndex(o); > 1
<- back[back] [prev] [next] [index] [root]