[back] [prev] [next] [index] [root]

 


AlffOrderIndex

Returns the index of an order.

Syntax:

d := AlffOrderIndex(o);

element
  d  
of the coefficient ring
algebraic function field order
  o  

See also:  AlffOrderMaxFinite, AlffOrderMaxInfty

Description:

This function returns the index of the equation order in the given order (as a module over its coefficient ring).


Example:


kash> AlffInit(FF(7,1));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^3*y+T);
"Defining global variables: F, o, oi, one"
kash> o := AlffOrderMaxFinite(F);
Finite maximal order of 
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(7)
Variables: T
given by transformation matrix
[T^3 + T^2 + 5*T + 6                   0     4*T^2 + 6*T + 3]
[                  0 T^3 + T^2 + 5*T + 6     3*T^2 + 5*T + 3]
[                  0                   0                   1]
with denominator T^3 + T^2 + 5*T + 6
kash> p := AlffOrderIndex(o);
> 1


<- back[back] [prev] [next] [index] [root]