[back] [prev] [next] [index] [root]

 


AlffOrderEqInfty

Computes an equation order of the given algebraic function field.

Syntax:

o := AlffOrderEqInfty(F);

algebraic function field order
  o  
algebraic function field
  F  

See also:  AlffOrderEqFinite, Alff, AlffElt

Description:

Let R be the valuation ring of the degree valuation of k(T), that is R = {g/h | g,h\in k[T], h\neq 0, \deg(g) <= \deg(h)}, and let F/k(T) be an algebraic function field. This function computes an R-equation order R[rho] where rho \in F generates F over k(T) and is integral over R.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^4+1);
Algebraic function field defined by
.1^3 + .2^4 + 1
over
Univariate rational function field over GF(5^2)
Variables: T

kash> AlffOrderEqInfty(F);
> Infinite equation order of 
Algebraic function field defined by
.1^3 + .2^4 + 1
over
Univariate rational function field over GF(5^2)
Variables: T



<- back[back] [prev] [next] [index] [root]