[back] [prev] [next] [index] [root]

 


AlffOrderBasisValues

Returns some values depending on the B^*-values of the basis of an order of a global function field.

Syntax:

L := AlffOrderBasisValues(o);

list
  L  
global function field order
  o  

See also:  Alff, AlffOrderL0, AlffOrderReduce

Description:

Denote by n the FF_q[T]-rank of the order o and by b_1, … ,b_n\in o its basis. Then the function returns L:=[[eB^*(b_1), … ,eB^*(b_n)],\max_{i=1}^n B^*(b_i), \sum_{i=1}^n B^*(b_i),e]. The infinite place of k(T) has to be tamely ramified in F. See AlffEltBstar() for the definition of B^*, e and Scho1 for further definitions and algorithms.


Example:


kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> AlffOrderBasisValues(o);
> [ [ 0, 4, 8 ], 8, 12, 3 ]


<- back[back] [prev] [next] [index] [root]