[back] [prev] [next] [index] [root]

 


AlffIdealValuation

Return the valuation of an ideal at a prime ideal.

Syntax:

v := AlffIdealValuation(P, I);

integer
  v  
alff order ideals
  P, I  
in maximal order o

See also:  AlffIdealFactor, AlffIdealIsPrime

Description:

This function returns the valuation of an ideal at a prime ideal. They have to be defined in the same order which must be maximal (i.~e.~a Dedekind ring).


Example:

Compute a valuation:

kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> a := AlffElt(o, [0, 1, 0]);
[ 0, 1, 0 ]
kash> I := (T + w^3)*o + a*o;
< 
[ T + w^3        0        0]
[       0        1        0]
[       0        0        1]
/ 1
 >
kash> P := AlffIdealFactor(I)[1][1];
< [ T + w^3, 0, 0 ], [ 0, 1, 0 ] >
kash> AlffIdealValuation(P, I^(-2));
> -2


<- back[back] [prev] [next] [index] [root]