[back] [prev] [next] [index] [root]

 


AlffIdealFactor

Return the factorization of an ideal.

Syntax:

L := AlffIdealFactor(I);

list
  L  
alff order ideal
  I  
in maximal order

See also:  AlffIdealValuation, AlffIdealIsPrime

Description:

This function computes the factorization of an ideal I in its order which must be maximal. The return value is a list of pairs consisting of prime ideals {frak P}_i and exponents e_i such that I = \prod {frak P}_i^{e_i}.


Example:

Factor some ideals:

kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> AlffIdealFactor((T+w^3)*o);
[ [ < [ T + w^3, 0, 0 ], [ 0, 1, 0 ] >, 3 ] ]
kash> a := AlffElt(o, [0, 1, 0]);
[ 0, 1, 0 ]
kash> I := (T + w^3)*o + a*o;
< 
[ T + w^3        0        0]
[       0        1        0]
[       0        0        1]
/ 1
 >
kash> AlffIdealFactor(I);
> [ [ < [ T + w^3, 0, 0 ], [ 0, 1, 0 ] >, 1 ] ]


<- back[back] [prev] [next] [index] [root]