[back] [prev] [next] [index] [root]

 


AlffIdealBasisUpperHNF

Return an ideal basis in upper Hermite normal form.

Syntax:

L := AlffIdealBasisUpperHNF(I);

list
  L  
alff order ideal
  I  

See also:  AlffIdealBasis, AlffIdeal2EltAssure

Description:

This function returns a list of two entries. The first entry is a matrix in upper Hermite normal form representing an ideal basis with respect to the order basis. The second entry is the denominator of the ideal.


Example:

Some computations:

kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> I := T*o;
< [ T, 0, 0 ] >
kash> AlffIdealBasisUpperHNF(I);
[ [T 0 0]
    [0 T 0]
    [0 0 T], 1 ]
kash> a := AlffElt(o, [0, 1, 0]);
[ 0, 1, 0 ]
kash> I := a*o;
< [ 0, 1, 0 ] >
kash> AlffIdealBasisUpperHNF(I);
> [ [   T^4 + 1          0          0]
    [         0          1          0]
    [         0          0          1], 1 ]


<- back[back] [prev] [next] [index] [root]