[back] [prev] [next] [index] [root]

 


AlffElt

Creates an element of an algebraic function field F/k(T).

Syntax:

a := AlffElt(o, s);
a := AlffElt(o, b);
a := AlffElt(o, L);

algebraic function field element
  a  
algebraic function field order
  o  
finite field element, rational or order element
  s  
a constant
polynomial or quotient field element
  b  
a rational function
list
  L  
of above s or b of length n

See also:  Alff, AlffOrderEqFinite, AlffOrderEqInfty, AlffOrderMaxFinite, AlffOrderMaxInfty

Description:

Let o be an alff order in F of rank n with basis b_1, … ,b_n. Invoked with s or b these arguments will be embedded into k(T) \subseteq F. Invoked with a list L :=[c_1, … ,c_n] of length n the element \sum_{i=1}^n c_i b_i will be returned. The c_i have to be of the same type as s or b.


Example:

Define an element of the finite maximal order:

kash> AlffInit(FF(5,2));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^4+1);
"Defining global variables: F, o, oi, one"
kash> a := AlffElt(o, [0, 1, 0]);
[ 0, 1, 0 ]
kash> a^3+T^4+1;
> [ 0, 0, 0 ]


<- back[back] [prev] [next] [index] [root]