[back] [prev] [next] [index] [root]

 


AlffDivisorIdeals

Divisor corresponding ideals of maximal orders.

Syntax:

L := AlffDivisorIdeals(D);

list
  L  
of finite and infinite ideals
alff divisor
  D  

See also:  AlffDivisor

Description:

Given an alff divisor D this function returns the ideals of the finite and infinite maximal order whose ideal factorizations define -D (note the minus sign).


Example:


kash> AlffInit(FF(2,4));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^3*y+T);
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(2^4)
Variables: T

kash> P := AlffPlaceSplit(F,T+1)[1];
Alff place < [ T + 1, 0, 0 ] >
kash> D := AlffDivisor(P);
Alff divisor
[ [ Alff place < [ T + 1, 0, 0 ] >, 1 ] ]

kash> I := AlffDivisorIdeals(D);
> [ < 
    [   1    0    0]
    [   0    1    0]
    [   0    0    1]
    / T + 1
     >, < [ 1, 0, 0 ] > ]


<- back[back] [prev] [next] [index] [root]