[back] [prev] [next] [index] [root]
L := AlffDivisorIdeals(D);
| list | L |
of finite and infinite ideals |
| alff divisor | D |
See also: AlffDivisor
kash> AlffInit(FF(2,4));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^3*y+T);
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(2^4)
Variables: T
kash> P := AlffPlaceSplit(F,T+1)[1];
Alff place < [ T + 1, 0, 0 ] >
kash> D := AlffDivisor(P);
Alff divisor
[ [ Alff place < [ T + 1, 0, 0 ] >, 1 ] ]
kash> I := AlffDivisorIdeals(D);
> [ <
[ 1 0 0]
[ 0 1 0]
[ 0 0 1]
/ T + 1
>, < [ 1, 0, 0 ] > ]
<- back[back] [prev] [next] [index] [root]