[back] [prev] [next] [index] [root]
L := AlffDivisorIdeals(D);
list | L |
of finite and infinite ideals |
alff divisor | D |
See also: AlffDivisor
kash> AlffInit(FF(2,4)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> F := Alff(y^3+T^3*y+T); Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(2^4) Variables: T kash> P := AlffPlaceSplit(F,T+1)[1]; Alff place < [ T + 1, 0, 0 ] > kash> D := AlffDivisor(P); Alff divisor [ [ Alff place < [ T + 1, 0, 0 ] >, 1 ] ] kash> I := AlffDivisorIdeals(D); > [ < [ 1 0 0] [ 0 1 0] [ 0 0 1] / T + 1 >, < [ 1, 0, 0 ] > ]
<- back[back] [prev] [next] [index] [root]