[back] [prev] [next] [index] [root]
D2 := AlffDivisorDen(D);
alff divisor | D2 |
|
alff divisor | D |
See also: AlffDivisorNum
kash> AlffInit(FF(3,1)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> F := Alff(y^3+T^3*y+T); Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(3) Variables: T kash> l := AlffPlaceSplit(F, 1/T); [ Alff place < [ 1/T, 0, 0 ], [ 2/T, 1/T, (2*T + 2)/T ] >, Alff place < [ 1/T, 0, 0 ], [ 2, (2*T + 2)/T, 2 ] > ] kash> D := l[1] - l[2]; Alff divisor [ [ Alff place < [ 1/T, 0, 0 ], [ 2/T, 1/T, (2*T + 2)/T ] >, 1 ], [ Alff place < [ 1/T, 0, 0 ], [ 2, (2*T + 2)/T, 2 ] >, -1 ] ] kash> AlffDivisorDen(D); > Alff divisor [ [ Alff place < [ 1/T, 0, 0 ], [ 2, (2*T + 2)/T, 2 ] >, 1 ] ]
<- back[back] [prev] [next] [index] [root]