[back] [prev] [next] [index] [root]

 


AlffDivisorDeg

Degree of a divisor.

Syntax:

d := AlffDivisorDeg(D);

integer
  d  
alff divisor
  D  

See also:  AlffPlaceDeg, AlffDivisorLDim, AlffGenus

Description:

This function returns the degree of an alff divisor over the constant field of definition (not the exact constant field) of the algebraic function field.


Example:


kash> AlffInit(FF(3,1));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^3+T^3*y+T);
"Defining global variables: F, o, oi, one"
kash> l := AlffPlaceSplit(F, 1/T);
[ Alff place < [ 1/T, 0, 0 ], [ 2/T, 1/T, (2*T + 2)/T ] >, 
  Alff place < [ 1/T, 0, 0 ], [ 2, (2*T + 2)/T, 2 ] > ]
kash> D := Sum(l);
Alff divisor
[ [ Alff place < [ 1/T, 0, 0 ], [ 2/T, 1/T, (2*T + 2)/T ] >, 1 ],
[ Alff place < [ 1/T, 0, 0 ], [ 2, (2*T + 2)/T, 2 ] >, 1 ] ]

kash> AlffDivisorDeg(D);
2
kash> a := AlffElt(o, [0, 1, 2]);
[ 0, 1, 2 ]
kash> AlffDivisorDeg(AlffDivisor(a));
> 0


<- back[back] [prev] [next] [index] [root]