[back] [prev] [next] [index] [root]

 


AlffDivisorAlff

Given a divisor this function returns the algebraic function field it belongs to.

Syntax:

F := AlffDivisorAlff(D);

algebraic function field
  F  
alff divisor
  D  

See also:  AlffOrderAlff, AlffPlaceAlff

Description:

no detailed description available yet


Example:


kash> AlffInit(FF(2,1));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^3*y+T);
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(2)
Variables: T

kash> P := AlffPlaceSplit(F, T+1)[1];
Alff place < [ T + 1, 0, 0 ] >
kash> D := AlffDivisor(P);
Alff divisor
[ [ Alff place < [ T + 1, 0, 0 ] >, 1 ] ]

kash> AlffDivisorAlff(D);
> Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(2)
Variables: T



<- back[back] [prev] [next] [index] [root]