[back] [prev] [next] [index] [root]

 


AlffDivisor

Creation of divisors.

Syntax:

D := AlffDivisor(F);
D := AlffDivisor(a);
D := AlffDivisor(P);
D := AlffDivisor(I, J);
D := AlffDivisor(u, v);

alff divisor
  D  
algebraic function field
  F  
alff order element
  a  
alff place
  P  
alff order ideal
  I  
of the finite maximal order
alff order ideal
  J  
of the infinite maximal order
alff order elements
  u,v  

See also:  AlffPlaceSplit, AlffIdealFactor, AlffEltMove, Alff

Description:

This function allows the creation of algebraic function field divisors. There are several possibilities for the arguments:


Example:


kash> AlffInit(FF(5,1));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> AlffOrders(y^2+T^3+1);
"Defining global variables: F, o, oi, one"
kash> AlffDivisor(F);
Alff divisor
[  ]

kash> a := AlffElt(o, T);
[ T, 0 ]
kash> AlffDivisor(a);
Alff divisor
[ [ Alff place < [ T, 0 ], [ 2, 1 ] >, 1 ],
[ Alff place < [ T, 0 ], [ 3, 1 ] >, 1 ],
[ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, -2 ] ]

kash> l := AlffPlaceSplit(F, T);
[ Alff place < [ T, 0 ], [ 2, 1 ] >, Alff place < [ T, 0 ], [ 3, 1 ] > ]
kash> D := AlffDivisor(l[1]);
Alff divisor
[ [ Alff place < [ T, 0 ], [ 2, 1 ] >, 1 ] ]

kash> l := AlffPlacesDegOne(F);
[ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, Alff place < [ T, 0 ], [ 2, 1 ] >, 
  Alff place < [ T, 0 ], [ 3, 1 ] >, Alff place < [ T + 3, 0 ], [ 1, 1 ] >, 
  Alff place < [ T + 3, 0 ], [ 4, 1 ] >, 
  Alff place < [ T + 1, 0 ], [ 0, 1 ] > ]
kash> 3*Sum(l) + D;
Alff divisor
[ [ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, 3 ],
[ Alff place < [ T, 0 ], [ 2, 1 ] >, 4 ],
[ Alff place < [ T, 0 ], [ 3, 1 ] >, 3 ],
[ Alff place < [ T + 3, 0 ], [ 1, 1 ] >, 3 ],
[ Alff place < [ T + 3, 0 ], [ 4, 1 ] >, 3 ],
[ Alff place < [ T + 1, 0 ], [ 0, 1 ] >, 3 ] ]

kash> 2*D > D;
true
kash> 2*D > D + l[1];
> false


<- back[back] [prev] [next] [index] [root]