[back] [prev] [next] [index] [root]
D := AlffDivisor(F); D := AlffDivisor(a); D := AlffDivisor(P); D := AlffDivisor(I, J); D := AlffDivisor(u, v);
alff divisor | D |
|
algebraic function field | F |
|
alff order element | a |
|
alff place | P |
|
alff order ideal | I |
of the finite maximal order |
alff order ideal | J |
of the infinite maximal order |
alff order elements | u,v |
See also: AlffPlaceSplit, AlffIdealFactor, AlffEltMove, Alff
kash> AlffInit(FF(5,1)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> AlffOrders(y^2+T^3+1); "Defining global variables: F, o, oi, one" kash> AlffDivisor(F); Alff divisor [ ] kash> a := AlffElt(o, T); [ T, 0 ] kash> AlffDivisor(a); Alff divisor [ [ Alff place < [ T, 0 ], [ 2, 1 ] >, 1 ], [ Alff place < [ T, 0 ], [ 3, 1 ] >, 1 ], [ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, -2 ] ] kash> l := AlffPlaceSplit(F, T); [ Alff place < [ T, 0 ], [ 2, 1 ] >, Alff place < [ T, 0 ], [ 3, 1 ] > ] kash> D := AlffDivisor(l[1]); Alff divisor [ [ Alff place < [ T, 0 ], [ 2, 1 ] >, 1 ] ] kash> l := AlffPlacesDegOne(F); [ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, Alff place < [ T, 0 ], [ 2, 1 ] >, Alff place < [ T, 0 ], [ 3, 1 ] >, Alff place < [ T + 3, 0 ], [ 1, 1 ] >, Alff place < [ T + 3, 0 ], [ 4, 1 ] >, Alff place < [ T + 1, 0 ], [ 0, 1 ] > ] kash> 3*Sum(l) + D; Alff divisor [ [ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, 3 ], [ Alff place < [ T, 0 ], [ 2, 1 ] >, 4 ], [ Alff place < [ T, 0 ], [ 3, 1 ] >, 3 ], [ Alff place < [ T + 3, 0 ], [ 1, 1 ] >, 3 ], [ Alff place < [ T + 3, 0 ], [ 4, 1 ] >, 3 ], [ Alff place < [ T + 1, 0 ], [ 0, 1 ] >, 3 ] ] kash> 2*D > D; true kash> 2*D > D + l[1]; > false
<- back[back] [prev] [next] [index] [root]