[back] [prev] [next] [index] [root]
AlffDiffCartierMatrix
Computes a representation matrix of the Cartier operator.
Syntax:
M := AlffDiffCartierMatrix(F, r);
matrix |
M |
|
global function field |
F |
|
integer |
r |
C is r times applied. |
See also: AlffDiff
Description:
Let F/k be a global function field, omega_1, \dots,
omega_g \in Omega(F/k) be a basis for the holomorphic
differentials and r \in Z^{ >= 1}.
Let M = (\lambda_{i,j})_{i,j} \in
k^{g \times g} be the matrix such that
C^r(omega_i) = \sum_{m=1}^g \lambda_{i, m} omega_m
for all 1 <= i <= g. This function returns M.
Example:
<- back[back] [prev] [next] [index] [root]