[back] [prev] [next] [index] [root]
AlffClassNumberApproxBound
Return a bound for the prime divisors to be considered
for the approximation of the class number of a global
function field.
Syntax:
b := AlffClassNumberApproxBound(q, g, a);
b := AlffClassNumberApproxBound(F, a);
integer |
b |
approximation bound |
integers |
q, g |
exact constant field size and genus |
alff |
F |
global function field |
real |
a |
\in R^{> 1} |
See also: AlffClassNumberApprox, AlffClassGroup, AlffLPoly, AlffInit, AlffOrders
Description:
Let F/k be a global function field of genus g over the exact
constant field of q elements. This function computes b \in Z
such that frac{2g}{q^{1/2}-1} cdot frac{q^{-b/2}}{b+1}
\;<\; \log(a) / 2 holds.
See function AlffClassNumberApprox().
Example:
<- back[back] [prev] [next] [index] [root]