[back] [prev] [next] [index] [root]

 


AlffClassNumberApproxBound

Return a bound for the prime divisors to be considered for the approximation of the class number of a global function field.

Syntax:

b := AlffClassNumberApproxBound(q, g, a);
b := AlffClassNumberApproxBound(F, a);

integer
  b  
approximation bound
integers
  q, g  
exact constant field size and genus
alff
  F  
global function field
real
  a  
\in R^{> 1}

See also:  AlffClassNumberApprox, AlffClassGroup, AlffLPoly, AlffInit, AlffOrders

Description:

Let F/k be a global function field of genus g over the exact constant field of q elements. This function computes b \in Z such that frac{2g}{q^{1/2}-1} cdot frac{q^{-b/2}}{b+1} \;<\; \log(a) / 2 holds. See function AlffClassNumberApprox().


Example:



<- back[back] [prev] [next] [index] [root]