[back] [prev] [next] [index] [root]

 


AbelianRayGroupImbed

Imbeds a ClassGroup into a RayClassGroup.

Syntax:

dualhom := AbelianRayGroupImbed(G,g);

abstract rayclassgroup
  G  
abstract classgroup
  g  

See also:  RayClassGroupToAbelianGroup

Description:

If I^{({ \goth f})}/P_{ \goth f} is a ray class group with conductor { \goth f} and I^{ \goth f'}/U_{ \goth f'} is a classgroup with conductor {\goth f'}, then we may imbed U_{\goth f'} canonically into I^{({\goth f})}/P_{\goth f}: U_{\goth f'}^{({\goth f})}/P_{\goth f} is a subgroup of I^{({\goth f})}/P_{\goth f}.


Example:


kash> O:=OrderMaximal(x^3-x^2-9*x+8);;
kash> G :=RayClassGroupToAbelianGroup(25*O);;
kash> g:=RayClassGroupToAbelianGroup(1*O);;
kash> u:=AbelianRayGroupImbed(G,g);
Group with relations:
[2 0]
[0 5]



<- back[back] [prev] [next] [index] [root]