[back] [prev] [next] [index] [root]
AbelianRayGroupImbed
Imbeds a ClassGroup into a RayClassGroup.
Syntax:
dualhom := AbelianRayGroupImbed(G,g);
| abstract rayclassgroup |
G |
|
| abstract classgroup |
g |
|
See also: RayClassGroupToAbelianGroup
Description:
If I^{({ \goth f})}/P_{ \goth f} is a ray class group with
conductor { \goth f} and I^{ \goth f'}/U_{ \goth f'} is
a classgroup with conductor {\goth f'}, then we may
imbed U_{\goth f'} canonically into
I^{({\goth f})}/P_{\goth f}: U_{\goth f'}^{({\goth f})}/P_{\goth f}
is a subgroup of I^{({\goth f})}/P_{\goth f}.
Example:
kash> O:=OrderMaximal(x^3-x^2-9*x+8);;
kash> G :=RayClassGroupToAbelianGroup(25*O);;
kash> g:=RayClassGroupToAbelianGroup(1*O);;
kash> u:=AbelianRayGroupImbed(G,g);
Group with relations:
[2 0]
[0 5]
<- back[back] [prev] [next] [index] [root]