[back] [prev] [next] [index] [root]

 


AbelianMultiHomGroup

Computes the group of multilinear mappings.

Syntax:

L := AbelianMultiHomGroup([g_{1}, … ,g_{n}], h);

groups
   g_{1}, … , g_{n}, h  
list
  L  

See also:  AbelianGroupMultiHomCreate

Description:

Computes the group of multilinear mappings from d = g_{1}\timescdots\times g_{n} to h. AbelianMultiHomGroup returns a list with three entries: You need d and t only if you want to create multilinear mappings from g_{1}\timescdots\times g_{n} to h corresponding to a given matrix using the function \hyperlink{AbelianGroupMultiHomCreate}{AbelianGroupMultiHomCreate}.


Example:


kash> z := AbelianGroupCreate(Mat(Z,[[0]]));;
kash> z2 := AbelianGroupCreate(Mat(Z,[[2]]));;
kash> z4 := AbelianGroupCreate(Mat(Z,[[4]]));;
kash> z8 := AbelianGroupCreate(Mat(Z,[[8]]));;
kash> l := AbelianMultiHomGroup([z,z4,z8], z2*z8);
[ Group with relations:
    [2 0]
    [0 4], Group with relations:
    [0 0 0]
    [0 4 0]
    [0 0 8], Group with relations:
    [4] ]



Example:

mg is the group of multilinear mappings from d = z \times z4 \times z8 to h = z2 \times z8:

kash> mg := l[1];
Group with relations:
[2 0]
[0 4]



Example:

d is the direct product z \times z4 \times z8:

kash> d := l[2];
Group with relations:
[0 0 0]
[0 4 0]
[0 0 8]



Example:

t is the tensor product z otimes z4 otimes z8:

kash> t := l[3];
Group with relations:
[4]



Example:

elt is element of group of multilinear mappings from d = z \times z4 \times z8 to h = z2 \times z8:

kash> elt := AbelianGroupEltCreate(mg, [1,0]);
[1 0]



Example:

f is a multilinear mapping from d = z\times z4 \times z8 to h = z2 \times z8:

kash> f := AbelianGroupDiscreteExp(elt);
MultiHom [ 1, 1, 1 ] from Group with relations:
[0 0 0]
[0 4 0]
[0 0 8] to Group with relations:
[2 0]
[0 8]

kash> a := AbelianGroupEltCreate(d, [1,1,1]);
[1 1 1]
kash> f * a;
> [1 0]


<- back[back] [prev] [next] [index] [root]