[back] [prev] [next] [index] [root]
L := AbelianMultiHomGroup([g_{1}, … ,g_{n}], h);
groups | g_{1}, … , g_{n}, h |
|
list | L |
See also: AbelianGroupMultiHomCreate
kash> z := AbelianGroupCreate(Mat(Z,[[0]]));; kash> z2 := AbelianGroupCreate(Mat(Z,[[2]]));; kash> z4 := AbelianGroupCreate(Mat(Z,[[4]]));; kash> z8 := AbelianGroupCreate(Mat(Z,[[8]]));; kash> l := AbelianMultiHomGroup([z,z4,z8], z2*z8); [ Group with relations: [2 0] [0 4], Group with relations: [0 0 0] [0 4 0] [0 0 8], Group with relations: [4] ]
kash> mg := l[1]; Group with relations: [2 0] [0 4]
kash> d := l[2]; Group with relations: [0 0 0] [0 4 0] [0 0 8]
kash> t := l[3]; Group with relations: [4]
kash> elt := AbelianGroupEltCreate(mg, [1,0]); [1 0]
kash> f := AbelianGroupDiscreteExp(elt); MultiHom [ 1, 1, 1 ] from Group with relations: [0 0 0] [0 4 0] [0 0 8] to Group with relations: [2 0] [0 8] kash> a := AbelianGroupEltCreate(d, [1,1,1]); [1 1 1] kash> f * a; > [1 0]
<- back[back] [prev] [next] [index] [root]