[back] [prev] [next] [index] [root]

 


AbelianGroupHomKernel

Returns the kernel of a group homomorphism.

Syntax:

g := AbelianGroupHomKernel(hom [,generators]);

group
  g  
homomorphism
  hom  
boolean
  generators  

See also:  AbelianGroupHomImage, AbelianQuotientGroup, AbelianGroupCanonicalQuotient

Description:

Returns the kernel g of the homomorphism hom. g is a group. If the second (optional) parameter generators is true then the generators of the kernel g are generated, too.


Example:


kash> g1 := AbelianGroupCreate([[1,2,3],[2,4,0], [2,0,0]]);;
kash> g2 := AbelianGroupCreate([[1,0,0],[0,4,0], [1,1,1]]);;
kash> mat := Mat(Z, [[0,0,0],[6,0,-6],[4,0,4]]);;
kash> hom := AbelianGroupHomCreate(g1, g2, mat, true);
HomMatrix =
[ 0  0  0]
[ 6  0 -6]
[ 4  0  4] 
from Group with relations:
[1 2 3]
[2 4 0]
[2 0 0] 
to Group with relations:
[1 0 0]
[0 4 0]
[1 1 1]

kash> g := AbelianGroupHomKernel(hom);
Group with relations:
[1 1 3]
[0 2 0]
[0 0 6]
kash> AbelianGroupSmithCreate(g);
> Group with relations:
[2 0]
[0 6]


<- back[back] [prev] [next] [index] [root]