[back] [prev] [next] [index] [root]
flag := AbelianGroupEnumNext(s);
boolean | flag |
true iff there is a valid element in s |
record | s |
generated by AbelianGroupEnumInit |
AbelianGroupElt | s.elt |
See also: AbelianGroupEnumInit
kash> o := OrderMaximal(Z, 2, 10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> G := RayClassGroupToAbelianGroup(9*o); RayClassGroupToAbelianGroup(<9>, [ ]) Group with relations: [2 0] [0 3] kash> s := AbelianGroupEnumInit(G); Record of type AbelianGroupEnum kash> while AbelianGroupEnumNext(s) do > Print(s.elt, "\t", AbelianGroupDiscreteExp(s.elt), "\n"); > od; > [0 0] <1> [1 1] <[818, 168], [840, 409]> [0 2] <[409, 84]> [1 0] <[14, 12], [60, 7]> [0 1] <[7, 6]> [1 2] <[15806, 6084], [30420, 7903]>
<- back[back] [prev] [next] [index] [root]