[back] [prev] [next] [index] [root]
a := AbelianGroupDiscreteLog(g, b);
group | g |
|
group element | a |
representation of b in the abstract group g |
object | b |
See also: AbelianGroupDiscreteExp
kash> O := OrderMaximal(x^2-10); Generating polynomial: x^2 - 10 Discriminant: 40 kash> g := RayResidueRingToAbelianGroup(27*O, [2]); Group with relations: [2 0 0 0 0] [0 9 0 0 0] [0 0 2 0 0] [0 0 0 9 0] [0 0 0 0 2] kash> a := AbelianGroupEltCreate(g, [1, 2, 3, 0, 0]); [1 2 3 0 0] kash> b := AbelianGroupDiscreteExp(a); [-174350479000, 82373763000] kash> a := AbelianGroupDiscreteLog(g, b); [1 2 1 0 0]
kash> g := RayClassGroupToAbelianGroup(1*O); RayClassGroupToAbelianGroup(<1>, [ ]) Group with relations: [2] kash> I := Ideal(2,Elt(O,[0,1])); <2, [0, 1]> kash> b := AbelianGroupDiscreteLog(g,I); > [1]
<- back[back] [prev] [next] [index] [root]