[back] [prev] [next] [index] [root]
q := AbelianGroupCanonicalQuotient(hom);
group | q |
|
homomorphism | hom |
See also: AbelianGroupHomImage, AbelianGroupHomKernel, AbelianQuotientGroup
kash> g := AbelianGroupCreate([[1,2,3],[2,4,0], [2,0,0]]);; kash> h := AbelianGroupCreate([[1,0,0],[0,4,0], [1,1,1]]);; kash> mat := Mat(Z, [[0,0,0],[6,0,-6],[4,0,4]]);; kash> hom := AbelianGroupHomCreate(g, h, mat, true); HomMatrix = [ 0 0 0] [ 6 0 -6] [ 4 0 4] from Group with relations: [1 2 3] [2 4 0] [2 0 0] to Group with relations: [1 0 0] [0 4 0] [1 1 1] kash> q := AbelianGroupCanonicalQuotient(hom); Group with relations: [1 0 0] [0 2 0] [0 0 1] [1 2 3] [2 4 0] [2 0 0] kash> AbelianGroupSmithCreate(q); > Group with relations: [2]
<- back[back] [prev] [next] [index] [root]