Publications

  1. How connection probability shapes fluctuations of neural population dynamics
    Greven, N. E., Ranft, J., and Schwalger, T.
    arXiv e-prints arXiv:2412.16111 Dec 2024
  2. Structure, dynamics, coding and optimal biophysical parameters of efficient excitatory-inhibitory spiking networks
    Koren, V., Malerba, S. B., Schwalger, T., and Panzeri, S.
    eLife Jul 2024
  3. A refractory density approach to a multi-scale SEIRS epidemic model
    Chizhov, A., Pujo-Menjouet, L., Schwalger, T., and Sensi, M.
    arXiv e-prints arXiv:2407.02396 Jun 2024
  4. Intra-ripple frequency accommodation in an inhibitory network model for hippocampal ripple oscillations
    Schieferstein, N., Schwalger, T., Lindner, B., and Kempter, R.
    PLOS Comput. Biol. Feb 2024
  5. Modeling brain network flexibility in networks of coupled oscillators: a feasibility study
    Chinichian, Narges, Lindner, Michael, Yanchuk, Serhiy, Schwalger, Tilo, Schöll, Eckehard, and Berner, Rico
    Sci. Rep. Feb 2024
  1. On a Finite-Size Neuronal Population Equation
    Schmutz, V., Löcherbach, E., and Schwalger, T.
    SIAM J. Appl. Dyn. Syst. Feb 2023
  1. Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity
    Pietras, B., Schmutz, V., and Schwalger, T.
    PLOS Comput. Biol. Dec 2022
  1. When shared concept cells support associations: Theory of overlapping memory engrams
    Gastaldi, C., Schwalger, T., De Falco, E., Quiroga, R. Q., and Gerstner, W.
    PLOS Comput. Biol. Dec 2021
  2. Mapping Input Noise to Escape Noise in Integrate-and-fire neurons: A Level-Crossing Approach
    Schwalger, T.
    Biol. Cybern. Dec 2021
  1. Low-dimensional firing-rate dynamics for populations of renewal-type spiking neurons
    Pietras, B., Gallice, N., and Schwalger, T.
    Phys. Rev. E Dec 2020
  2. Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity
    Schmutz, V., Gerstner, W., and Schwalger, T.
    J. Math. Neurosc. Dec 2020
  1. Mind the Last Spike – Firing Rate Models for Mesoscopic Populations of Spiking Neurons
    Schwalger, T., and Chizhov, A. V.
    Curr. Opin. Neurobiol. Dec 2019
  2. How single neuron properties shape chaotic dynamics and signal transmission in random neural networks
    Muscinelli, S. P., Gerstner, W., and Schwalger, T.
    PLoS Comput. Biol. Jun 2019
    1. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size
      Schwalger, T., Deger, M., and Gerstner, W.
      PLoS Comput. Biol. Jun 2017
    1. A model of synaptic reconsolidation
      Kastner*, D. B., Schwalger, T.*, Ziegler, L., and Gerstner, W.
      Front. Neurosci. Jun 2016
    1. Analytical approach to an integrate-and-fire model with spike-triggered adaptation
      Schwalger, T., and Lindner, B.
      Phys. Rev. E Dec 2015
    2. Statistical structure of neural spiking under non-Poissonian or other non-white stimulation
      Schwalger, T., Droste, F., and Lindner, B.
      J. Comput. Neurosci. Dec 2015
    3. Slow fluctuations in recurrent networks of spiking neurons.
      Wieland, S., Bernardi, D., Schwalger, T., and Lindner, B.
      Phys. Rev. E Dec 2015
    4. Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation.
      Shiau, L., Schwalger, T., and Lindner, B.
      J. Comput. Neurosci. Jun 2015
    1. Fluctuations and information filtering in coupled populations of spiking neurons with adaptation
      Deger*, M., Schwalger*, T., Naud, R., and Gerstner, W.
      Phys. Rev. E Dec 2014
    1. Patterns of interval correlations in neural oscillators with adaptation
      Schwalger, T., and Lindner, B.
      Front. Comput. Neurosci. Dec 2013
    2. When the leak is weak – how the first-passage statistics of a biased random walk can approximate the ISI statistics of an adapting neuron
      Schwalger, T., Miklody, D., and Lindner, B.
      Eur. Phys. J. Spec. Topics Dec 2013
    3. Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing Statistics: Theory and Application to Paddlefish Electroreceptor Afferents
      Bauermeister*, C., Schwalger*, T., Russell, D.F., Neiman, A.B., and Lindner, B.
      PLoS Comp. Biol. Dec 2013
    4. Interplay of two signals in a neuron with heterogeneous synaptic short-term plasticity.
      Droste, F., Schwalger, T., and Lindner, B.
      Front. Comp. Neurosci. Dec 2013
    1. Interspike-interval correlations induced by two-state switching in an excitable system
      Schwalger, T., Tiana-Alsina, J., Torrent, M. C., Garcia-Ojalvo, J., and Lindner, B.
      EPL Dec 2012
    2. Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron.
      Fisch, K., Schwalger, T., Lindner, B., Herz, A.V.M., and Benda, J.
      J. Neurosci. Dec 2012
    1. Relation between cooperative molecular motors and active Brownian particles
      Touya, C., Schwalger, T., and Lindner, B.
      Phys. Rev. E Dec 2011
    1. Theory for serial correlations of interevent intervals
      Schwalger, T., and Lindner, B.
      Eur. Phys. J.-Spec. Top. Dec 2010
    2. How Noisy Adaptation of Neurons Shapes Interspike Interval Histograms and Correlations
      Schwalger, T., Fisch, K., Benda, J., and Lindner, B.
      PLoS Comput Biol Dec 2010
    1. Bifurcation analysis of synchronization dynamics in cortical feed-forward networks in novel coordinates
      Schwalger, T., Goedeke, S., and Diesmann, M.
      BMC Neurosci Dec 2009
    1. Higher-order statistics of a bistable system driven by dichotomous colored noise
      Schwalger, T., and Lindner, L.
      Phys. Rev. E Dec 2008
    2. Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times
      Schwalger, T., and Schimansky-Geier, L.
      Phys. Rev. E Dec 2008
    3. Theory of neuronal spike densities for synchronous activity in cortical feed-forward networks
      Goedeke, S., Schwalger, T., and Diesmann, M.
      BMC Neurosci Dec 2008
    1. Correlations in the Sequence of Residence Times
      Lindner, B., and Schwalger, T.
      Phys. Rev. Lett. Dec 2007
    1. May chaos always be suppressed by parametric perturbations?
      Schwalger, T., Dzhanoev, A., and Loskutov, A.
      Chaos Dec 2006