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Fédérale de Lausanne, Lausanne, Switzerland, 2 Institut für Mathematik, Technische Universität Berlin,
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Abstract

Assemblies of neurons, called concepts cells, encode acquired concepts in human Medial

Temporal Lobe. Those concept cells that are shared between two assemblies have been

hypothesized to encode associations between concepts. Here we test this hypothesis in a

computational model of attractor neural networks. We find that for concepts encoded in

sparse neural assemblies there is a minimal fraction cmin of neurons shared between

assemblies below which associations cannot be reliably implemented; and a maximal frac-

tion cmax of shared neurons above which single concepts can no longer be retrieved. In the

presence of a periodically modulated background signal, such as hippocampal oscillations,

recall takes the form of association chains reminiscent of those postulated by theories of

free recall of words. Predictions of an iterative overlap-generating model match experimen-

tal data on the number of concepts to which a neuron responds.

Author summary

Experimental evidence suggests that associations between concepts are encoded in the

hippocampus by cells shared between neuronal assemblies (“overlap” of concepts). What

is the necessary overlap that ensures a reliable encoding of associations? Under which

conditions can associations induce a simultaneous or a chain-like activation of concepts?

Our theoretical model shows that the ideal overlap presents a tradeoff: the overlap should

be larger than a minimum value in order to reliably encode associations, but lower than a

maximum value to prevent loss of individual memories. Our theory explains experimental

data from human Medial Temporal Lobe and provides a mechanism for chain-like recall

in presence of inhibition, while still allowing for simultaneous recall if inhibition is weak.
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Introduction

Human memory exploits associations between concepts. If you visited a famous place with a

friend, a postcard of that place will remind you of him or her. The episode “with my friend at

this place” has given rise to an association between two existing concepts: before the trip (the

episodic event), you already knew your friend (first concept) and had seen the place (second

concept), but only after the trip, you associate these two concepts.

Concepts are encoded in the human Medium Temporal Lobe (MTL) by neurons, called

“concept cells”, that respond selectively and invariantly to stimuli representing a specific per-

son or a specific place [1–3]. Each concept is thought to be represented by an assembly of con-

cept cells that increases their firing rates simultaneously upon presentation of an appropriate

stimulus. The fraction γ of neurons in the human MTL which is involved in the representation

of each concept is estimated to be γ* 0.23% [4]. Under the assumption that each memory

item is represented by the activation of a fixed, but random, subset of active neurons, a single

concept is expected to activate γN neurons and two arbitrary concepts are expected to share γ2

N cells, where N is the total number of neurons in the relevant brain areas.

Experimental studies have shown that single neurons can become responsive to new con-

cepts while learning pairs of associations [5]. Moreover, it has been estimated that assemblies

representing two arbitrary concepts share less than 1% of neurons, whereas assemblies repre-

senting previously associated concepts share about 4–5% of neurons [6] suggesting that an

increased fraction of shared neurons supports the association between concepts [6–8].

With the presence of shared neurons, the activation of a first assembly (e.g., a place) may

also activate a second assembly (e.g., a person). This poses several theoretical questions. First,

for the brain to function correctly as a memory network, it must remain possible to recall the

two associated concepts separately (e.g. place without your friend), and not automatically the

two together. However, if the concepts share too many neurons it becomes likely that the two

memory items can no longer be distinguished, but are merged into a single, broader concept

encoded by a larger number of active neurons. We therefore ask as a first question: what is the

maximally allowed fraction cmax of shared neurons between two assemblies before the possibil-

ity of separate memory recalls breaks down? Shared concept cells can be visualised as an over-

lap between two memory engrams. Below the maximal fraction cmax of shared neurons, each

of the associated patterns can be recalled as a separate memory pattern, as schematically illus-

trated in Fig 1A.

As an alternative to a static recall of one or the other concept (or the two associated con-

cepts together), we could also ask whether the activation of a concept would facilitate the recall

of an associated one, or even a temporal chain activation of associations (as described in free

memory recall tasks [9–12]), due to overlaps in the representations. In this context, we ask a

second question: if each concept is represented by a small fraction of active neurons γ, given

the activation of a concept, is there a minimal fraction of shared neurons cmin necessary to

enable a reliable activation of associated ones?

Moreover, while most experimental studies have dealt with pairwise associations between,

say one person and one place, more recent work has shown that a single neuron can respond

to multiple concepts [6], e.g., several related places. In view of this, we ask a third question:

how should memory be organized in a neural network such that k different memory engrams

all have the equal size pairwise overlaps?

Associative memory in recurrent networks, such as the area CA3 of the hippocampus, has

been modeled with attractor neural networks [13–17] where each memory item is encoded as

a memory engram [18, 19] in a fixed random subset of neurons (called “pattern” in the theo-

retical literature [17]) such that no pattern has an overlap above chance with another one.

PLOS COMPUTATIONAL BIOLOGY When shared concept cells support associations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009691 December 30, 2021 2 / 44

available at https://github.com/ChiaraGastaldi/pub_

Gastaldi_2021_AttractorNetwork.git.

Funding: WG and CG were supported by the Swiss

National Science Foundation (www.nsf.gov), grant

agreement 200020_184615 and by the European

Union Horizon 2020 Framework Program (https://

ec.europa.eu/programmes/horizon2020/) under

agreement no. 785907 (HumanBrain Project,

SGA2). RQQ acknowledges support from

Biotechnology and Biological Sciences Research

Council. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009691
https://github.com/ChiaraGastaldi/pub_Gastaldi_2021_AttractorNetwork.git
https://github.com/ChiaraGastaldi/pub_Gastaldi_2021_AttractorNetwork.git
http://www.nsf.gov
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/


Fig 1. Overlapping concepts can be retrieved separately and jointly. A) Activation of concepts (schematic). Black filled circles = inactive neurons.

Yellow filled circles = active neurons. Colored halos (red, green) represents assignment to a specific concept. When the fraction of shared neurons is

small (top row, c< cmax) the two concepts can be recalled separately or together. If the number of shared concept cells is too large (bottom row, c>
cmax), the recall of a first concept (red) leads inevitably to the activation of the second associated concept (green). B) Similarity measure. If only a subset

of neurons belonging to the first memory engram is activated (top), the configuration exhibits similarities m1 < 1 and m2 = 0. If the first memory is fully

recalled, while memory 2 is not (bottom), the similarity measures are m1 = 1 and m2� 1. C) Dynamics of the similarities for different fractions of

shared neurons. The similarities m1 (green) and m2 (red) as a function of time in a full network simulation (solid lines) are compared to predictions of

mean-field theory (dashed lines). Strong external stimulation I1 = 0.3 is given to the units belonging to concept μ = 1 during a first stimulation period

and a weak external stimulation I2 = 0.1 is given to the units belonging to concept μ = 2 during the second stimulation period (in grey). If c> cmax, the

concept 2 gets activated without receiving any stimulation. D) Three phase-planes of the dynamics of similarity variables m1 and m2 for different values
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Animal studies provide evidence of attractor dynamics in area CA3 [20, 21]. The few theoreti-

cal studies that considered overlapping memory engrams above chance level in the past [22,

23] focused on overlaps arising from a hierarchical organization of memories. Whereas such a

hierarchical approach is suitable for modeling memory representation in the cortex, we are

interested in modeling MTL, and in particular area CA3 of the hippocampus, where experi-

mentally no hierarchical or topographical organization has been observed [6]. In experiments,

episodic associations between arbitrary different concepts (such as a person and a place)—and

shared neurons in the corresponding assemblies—can be induced by joint presentation of

images representing the different concepts [5]. Inspired by these experiments, we create pair-

wise associations between a number of concepts by artificially introducing shared concept cells

in the model. We will talk about “overlapping engrams” if the number of shared concept cells

is beyond the number γ2N of cells that are shared by chance.

Results

The first two questions introduced above can be summarized as a more general one: What is

the role of those concept cells that are shared between stored memory engrams? To answer

this question, we consider an attractor neural network of N neurons in which P engrams are

stored in the form of binary random patterns [7]. The pattern~xm ¼ fx
m

i 2 f0; 1g; 1 � i � Ng
with pattern index μ 2 {1, . . ., P} represents one of the stored memory engrams: a value x

m

i ¼ 1

indicates that neuron i is part of the stored memory engram and therefore belongs to the

assembly of concept μ, while a value of x
m

i ¼ 0 indicates that it does not. A network that has

stored P memory engrams is said to have a memory load of α = P/N.

Since concept-cells in human hippocampus form sparse neural assemblies with a sparseness

parameter γ* 0.23% [4], we focus on the case of sparse memory engrams. In other words, an

arbitrary neuron i has a low probability g ¼ Probðxmi ¼ 1Þ � 1 to participate in the assembly

of concept cells corresponding to memory engram μ.

The attractor neural network is implemented in a standard way [24, 25]. Each neuron,

i = 1, � � �, N, is modelled by a firing rate model [25]

t
dri

dt
¼ � ri þ �ðhiÞ; ð1Þ

where ri(t) is the firing rate of neuron i and ϕ(h) = rmax/{1 + exp[−b(h − h0)]} is the sigmoidal

transfer function, or frequency-current (f-I) curve, characterized by the firing threshold h0, the

maximal steepness b, and the maximal firing rate rmax. The patterns~xm are encoded in the syn-

aptic weights wij via a Hopfield-Tsodyks connectivity for sparse patterns so that the average of

synaptic weights across a large population of neurons vanishes [17].

In attractor neural network models, memory engrams μ induce stable values r�
m;i of the neu-

ronal firing rates during the retrieval of a stored concept. In mathematical terms, to each

engram μ corresponds a fixed point~r�
m

in such a way that the firing rate r�
m;i of neuron i is high

if x
m

i ¼ 1 and low if x
m

i ¼ 0. When the network state~rðtÞ is initialized close enough to the

stored memory μ, the attractor dynamics drives the network to the retrieval state~r�
m

character-

ized by persistent activity of all those neurons that belong to the assembly of concept μ.

of fraction of shared neurons c. Arrows indicate direction and speed of increase or decrease of the similarity variables. Intersections of blue and orange

lines (the “nullclines” of the two variables m1, m2) indicate fixed points, with a stability encoded by color (legend). E) Minimum amplitude of the

external stimulation I2 needed to activate the memory of the second concept if the first one is activated (as a function of the fraction of shared neurons

c). Parameters: ĥ 0 ¼ 0:25, b̂ ¼ 100, rmax = 40 Hz, τ = 25 ms, α = 0, γ = 0.2%. For simulations: N = 10000, P = 2.

https://doi.org/10.1371/journal.pcbi.1009691.g001
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The similarity between the momentary network state and a stored memory μ is defined as

mmðtÞ ¼
1

Ngð1 � gÞrmax

XN

j¼1

x
m

j � g
� �

rjðtÞ: ð2Þ

The similarity measures the correlation between the firing rates {rj(t)}j=1,. . .,N and the

stored patterns~xm such that if memory concept μ is retrieved, then mμ* 1 (schematics in

Fig 1B), and, if no memory is recalled (resting state), then mμ* 0 for all μ. The similarity of

the network activity with a stored memory develops as a function of time. For example, com-

puter simulations of a network of N = 10000 interacting neurons indicate that, if one of two

engrams that share concept cells is stimulated for 120ms, then the similarity of the network

activity with this engram increases to a value close to one, indicating that the memory has

been recalled (Fig 1C middle) while the second memory is only weakly activated quantified by

a small, but non-zero similarity. However, if the fraction of shared neurons is above a maxi-

mally allowed fraction cmax, then the second memory always gets activated even before it is

stimulated (Fig 1C bottom) indicating that associations are so strong that the two concepts

have been merged.

Maximal fraction of shared neurons between memory engrams

In order to better understand the network dynamics, we develop a mathematical theory that

depends on the fraction of neurons c that are shared between two engrams. The total number
n of shared neurons in a network of size N depends on c and the sparsity parameter γ via the

relation n = γcN.

Let us imagine to gradually increase the fraction of shared neurons between the first two

memory engrams. At the lowest end, c = γ, the patterns~x1 and~x2 are independent, and hence

cell assemblies 1 and 2 share a small fraction of neurons corresponding to chance level. It is

well known, that in this case, each memory engram generates a separate attractive fixed-point

of the network dynamics [17] implying that the two corresponding concepts can be retrieved

separately. However, experimental data reports that, for associated concepts, the fraction of

shared neurons c* 4–5% [6] is much larger than the chance level γ* 0.23%. This observa-

tion suggests that the patterns~x1 and~x2 of two associated memory engrams have a fraction of

shared neurons larger than chance level, c> γ. On the other hand, in the (trivial) limit case of

large fraction of shared neurons c! 1, the two memory engrams and hence the two cell

assemblies share all neurons, and it is clearly impossible to retrieve one memory without the

other.

To study the maximal fraction of shared neurons cmax at which independent memory recall

breaks down, we use a mean-field approach for large networks and work in the limit N!1.

In this limit, it is possible to fully describe the network dynamics using the similarities mμ as

the relevant macroscopic variables. Since we are interested in the retrieval process of concepts

μ = 1 and 2, we assume the similarity of the present network state with other memories μ> 2

to be close to zero: we will refer to these non-activated memories as “background patterns”.

Under these assumptions, we find dynamical mean-field equations that capture the network

dynamics through the similarity variables m1 and m2.

t
dm1

dt
¼ � m1 þ F1ðm

1;m2Þ ð3aÞ

t
dm2

dt
¼ � m2 þ F2ðm

1;m2Þ ð3bÞ
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where the explicit form of the functions F1 and F2 is given in Eq (44) of Materials and methods

(or Eq (45) for the special case of small load α). Eq (3) represents a two-dimensional dynamical

systems which can be analyzed using phase-plane analysis. Fig 1D shows three phase-planes

in the m1 − m2 space, each for a different value of the fraction of shared neurons. The m1- or

m2-nullclines solve dm1/dt = 0 or dm2/dt = 0 in Eqs (3a) and (3b), respectively. The intersec-

tions between the m1- and m2-nullcline are equilibrium solutions, or fixed points, of the mean-

field dynamics and are color-coded according to their stability. For c = γ, we identify four sta-

ble fixed points: the resting state (m1, m2) = (0, 0), two single-retrieval states (m1, m2) = (1, 0)

and (m1, m2) = (0, 1) corresponding to the retrieval of concept μ = 1 and the retrieval of con-

cept μ = 2, respectively. Finally, there is a symmetric state which corresponds to the activation

of both concepts simultaneously, (m1 = m2 ≲ 1).

Once a maximally allowed value c = cmax is reached, the two single-retrieval states merge

with their nearby saddle points and disappear. To compute the numerical value of the maximal

fraction of shared neurons, we extract it following the procedure described in the paragraph

“Extract numerically the maximal correlation” in the MATERIALS AND METHODS. For fractions of

shared neurons c> cmax only two stable fixed points are left, the resting state and the symmet-

ric state in which assemblies of both concepts are activated together: this symmetric state is the

theoretical description of the state that we qualitatively predicted above where the activation of

a first concept leads inevitably to the activation of the second, overlapping one (Fig 1C, bot-

tom). The minimum external stimulation needed to activate the second concept depends on

the fraction of shared neurons (Fig 1E). With our choice of parameters, no external stimula-

tion is needed to recall the second memory, if the fraction of shared neurons is c> cmax = 22%,

since the two concepts have merged into a single one and are always recalled together.

In the limit of infinite steepness b!1, vanishing load α = 0 and vanishing sparseness

γ! 0, the value c0
max of the maximal fraction of shared neurons can be calculated analytically.

Since this value provides an upper bound of the maximal fraction of shared neurons for arbi-

trary b, we have the inequality (Fig 2A)

cmax � c0
max � gþ ð1 � gÞ

h0

A rmax
; ð4Þ

where A characterizes the overall strength of synaptic weights (see Eq (5) below). Further anal-

ysis (see Materials and methods) shows that the stationary states of the mean-field dynamics

depend—apart from the parameters γ, C and α related to the patterns—only on two dimen-

sionless parameters: the rescaled firing threshold ĥ0 ¼ h0=ðA rmaxÞ and the rescaled steepness

b̂ ¼ b � ðA rmaxÞ. We find that the maximal fraction of shared neurons cmax increases with b̂
and also with ĥ0 (Fig 2A).

We proceed by studying how the maximal fraction of shared neurons varies as a function of

the memory load α = P/N (Fig 2B). As the load increases, we observe that the maximal fraction

of shared neurons decreases, but the change is modest. This weak dependence on the load is

robust against two variations of the network where (i) self-interaction of neurons is excluded;

or (ii) the P − 2 background patterns are also overlapping in pairs, e.g., pattern 3 is overlapping

with pattern 4, 5 with 6, etc. For both modifications, the mean-field equations look slightly dif-

ferent (Materials and methods) but neither modification leads to a significant change of the

maximal fraction of shared neurons cmax (Fig 2A). In a network that has stored a total of P
memory engrams, the maximal fraction of shared neurons could potentially depend on the

group size p of patterns that are all overlapping with each other. So far we have considered

p = 2. We extended the mean-field approach to the case of three and four overlapping patterns

(SI) by rewriting and adapting Eq (44) in MATERIALS AND METHODS. Again we find that the
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maximal overlap is not significantly influenced by the group size p of overlapping patterns (Fig

2B). The group size p can be large provided that the total number of patterns P does not exceed

the memory capacity of the network.

In summary, we found a maximal fraction cmax of shared neurons beyond which the

retrieval of single concepts is no longer possible. The value of cmax depends on frequency-cur-

rent curve of neurons.

Fig 2. The maximal fraction cmax of shared neurons depends on the neuronal frequency-current curve but not on the memory load. A) Maximal

fraction (cmax, color code) as a function of the parameters b̂ ¼ b Armax (steepness) and ĥ 0 ¼ h0=ðArmaxÞ (firing threshold) of the frequency-current

curve. Niveau lines added for indicated values of cmax. In the black area the resting state is the only stable solution. Vertical white dashed lines indicate

the theoretical upper bound c0
max, for different values of ĥ 0. The green square indicates the parameter choice used in Figs 1 and 2B and 2C. The green

star indicates the parameters extracted for the Macaque inferotemporal cortex [24]. B) Maximal fraction cmax of shared neurons as a function of the

memory load α = P/N (left graph) without (solid grey line) or with overlaps in pairs of two of the P − 2 background patters (dashed green line); and as a

function of the number p of correlated patterns (histogram, right graph). C) As in Fig 1C, but with a large number of background patterns (α = 0.2).

Network activity exhibits only small similarity with background patterns (diversely colored lines) but large similarity with the stimulated pattern μ = 1.

Parameters (unless specified): γ = 0.2%, b̂ ¼ 100, ĥ 0 ¼ 0:25, rmax = 40 Hz, τ = 25ms; α = 0 in A-B. For simulations in C: N = 10000, p = 2, γ = 0.2%.

https://doi.org/10.1371/journal.pcbi.1009691.g002
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What is the minimal fraction of shared concept cells to encode

associations?

We find that a symmetric double-retrieval state exists where two concepts are recalled at the

same time (Fig 1D, top), even if the fraction of shared concept cells is at chance level. This co-

activation of two unrelated concepts could be an artifact of the model considered so far.

In order to check whether our findings in Figs 1 and 2 are generic, we added to the network

the effect of inhibitory neurons by implementing a negative feedback proportional to the over-

all activity of the N neurons in the network. Inhibitory feedback of strength J0 > 0 causes com-

petition during recall of memories. We find that for J0 = 0.5, each of the two concepts can be

recalled individually, but simultaneous recall of both concepts is not possible if the fraction of

shared concept cells is at chance level (Fig 3A). If we increase the fraction of shared concept

cells above c = 5%, then individual as well as simultaneous recall of the two associated memo-

ries becomes possible (Fig 3B). The effect becomes even more pronounced at c = 20% (Fig 3C).

If the fraction of shared neurons reaches a high value of cmax = 50%, then the separate retrieval

of the two individual concepts is no longer possible, indicating that the two concepts have

merged into a single one (Fig 3D). Thus, in the presence of inhibition of strength J0, we find

that the fraction c of shared neurons must be in a range cmin(J0)< c< cmax(J0) to enable indi-

vidual as well as joint recall of associated concepts. For J0 < 0.5, the minimal fraction cmin(J0) is

at chance level and for J0 = 0.5 at cmin = 5%.

Association chains

Neurons shared between memory engrams have been proposed to be the basis for the recall of

a memorized list of words [9–12, 26]. In order to translate this idea to chains of associated con-

cepts (Fig 4A), we follow earlier work [9–12, 26] and add two ingredients to the model of the

previous subsection. First, the strength of global inhibitory feedback is now periodically modu-

lated by oscillations mimicking Hippocampal oscillatory activity. The oscillations provide a

clock signal that triggers transitions between overlapping concepts. Second, we add to each

Fig 3. The existence of a symmetric double-retrieval state requires a fraction of shared neurons above chance level in the presence of global

inhibition. Four phase-planes showing the stable fixed points in presence of global inhibition, for a fractions of shared neurons A c = γ, B c = 5%, C

c = 20%, D c = 50%. On the diagonal, nullclines lie nearly on top of each other (dashed line). Parameters: ĥ 0 ¼ 0, b̂ ¼ 500, α = 0, γ = 0.2%, J0 = 0.5.

https://doi.org/10.1371/journal.pcbi.1009691.g003

PLOS COMPUTATIONAL BIOLOGY When shared concept cells support associations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009691 December 30, 2021 8 / 44

https://doi.org/10.1371/journal.pcbi.1009691.g003
https://doi.org/10.1371/journal.pcbi.1009691


neuron i an adaptation current θi(t) in order to prevent the network state to immediately

return to the previous concept. With this extended model, the network state hops from one

concept to the next (Fig 4B). Transitions are repeated, but after some time the network state

returns to one of the already retrieved memories, leading to a cycle of patterns [9] (Fig 4B). In

network simulations where concepts are represented by sparse memory engrams (γ = 0.2%),

we allow a subgroup of p = 2, 4 or 16 memory engrams to share a fraction of neurons of

c = 20%. Because the number of shared concept cells is identical between all pairs of concepts

within the same subgroup, the order of the recalled concepts depends on the initial condition.

If the subgroup of overlapping engrams is small (p = 2, 4), all memory items are retrieved,

while for a large group of overlapping engrams (p = 16) the cycle closes once a subgroup of the

overlapping memory engrams has been retrieved (Fig 4B). The number of concepts in the

Fig 4. Chain of associations requires shared concepts cells. A) Schematic of a chain of association cycling between two concepts. Assignment of cells

to assemblies is indicated by halos’ color. Filled black circles indicate inactive neurons and filled yellow circles indicate active neurons. The schematics

corresponds to the top plot of panel B. B) Full network simulation for engrams overlapping above chance level (c = 20%>γ) with low sparsity (γ =

0.2%). Each line corresponds to the similarity mμ with one of the stored memory engrams as a function of time. A subgroup of p engrams is overlapping

(top to bottom: p = 2,4,16. If the network state is initialized to retrieve one of the overlapping concepts, other concepts within the subgroup are retrieved

later. C) Same as in B, but memory engrams are independent (c = γ) and only share cells by chance. By decreasing the mean activity γ, the retrieval

dynamics of a chain of memories is disrupted. The match between mean-field theory and simulations is shown in S4 Fig. Parameters: N = 10000, P = 16,

b̂ !1, τθ = 1.125 s, T = 3.75 ms, TJ0
¼ 625 ms, τ = 25 ms, rmax = 40 Hz.

https://doi.org/10.1371/journal.pcbi.1009691.g004
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cycle depends on the time scale of adaptation: in Fig 4 we use ty � 2TJ0
, which determines a

cycle of minimum three concepts.

In previous studies [9–12, 26], each memory engram involved a large fraction (γ = 10%) of

neurons so that transitions could rely on the number of units shared by chance. The overlaps

between memory assemblies may vary due to finite size effects. The concept that shares the

biggest overlap with the active one, is activated next, until the association chain falls into peri-

odic cycle of patterns. However, given that the value of the sparsity in MTL is much smaller

(γ* 0.23%), it is natural to ask whether the number of neurons shared by chance (c = γ) is suf-

ficient to induce a sequence of memory retrievals. Our simulations indicate that this is not the

case (Fig 4C). Thus, in a network storing assemblies with a realistic level of sparsity γ* 0.2%,

memory engrams with a fraction of shared neurons above chance level are necessary for the

retrieval of chains of concepts.

To better understand the role of overlaps between engrams for the formation of association

chains, we extend the mean-field dynamics to include the global feedback with periodic modu-

lation J0(t). Since simulations indicate that overlaps are necessary, we want to estimate the

minimal and maximal fractions of shared neurons required to enable association chains.

Because, in our model, the periodic modulation of the global inhibition strength J0(t) is slow,

we consider the mean-field dynamics and the corresponding phase portraits quasi-statically at

the two extreme cases, where J0 is at its maximum and where J0 is at its minimum. For our

parameter setting, when J0(t) is clamped at its minimum, the network possesses three stable

states: the resting state and the two single retrieval states (Fig 5B, left). For a successful associa-

tion chain, we need that concepts can be retrieved separately. The fraction of shared neurons,

c0max, that makes the two single retrieval states disappear therefore sets the upper bound of the

useful range of c. The parameter c0max is analogous to cmax in the previous section, but evaluated

in the presence of perdiodic inhibition.

Next, we consider the situation when the global inhibition is clamped at its maximum and

find the minimal fraction such that the system has, besides the resting state, a second fixed

point for m1 = m2 > 0 where the assemblies of both the previous and next concept are simulta-

neously active at low firing rates. Since this state is necessary to enable the transition, we call it

the transition state. If the transition state is present, the network could, once global inhibition

decreases, either return from the transition state to the previous concept, or jump to the next

one (Fig 5B, right side). However, in the presence of adaptation (which is not included in the

phase plane picture of Fig 5), the transition to the next concept is systematically favored

because neurons participating in the assembly of the earlier concept are fatigued. The existence

of the transition state is a necessary condition for the formation of temporal association chains.

Thus, the lower bound of the fraction of shared neurons c0min is the smallest overlap such that

the transition state exists. Since in the mean-field limit, the transition state appears only for

c> γ, a fraction of shared neurons above chance level is needed to allow the hopping between

concepts. In Fig 5C–5E we show the dependence of the maximal and minimal fraction of

shared concept cells upon the sparsity γ and the steepness b: in both cases the dependence is

not strong, but sparser networks lead to a slightly smaller range of the admissible fraction c of

shared neurons supporting association chains. Importantly, the minimal fraction of shared

neurons necessary for association chains is significantly above the fraction of neurons that are

shared by chance. We find that for a suitable choice of neuronal and network parameters, asso-

ciation chains are possible for realistic values of γ and c as measured in human MTL. This sug-

gests that, in principle, associations could be implemented as sequences of transitions if the

number of shared neurons is above cmin.
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In conclusion, we have shown the need for overlaps between memory engrams—equivalent

to a number of shared concept cells significantly above chance level – to explain free memory

recall as a chain of associations in recurrent networks such as the human CA3 where each

engram involves only a small fraction of neurons.

How does a network embed groups of overlapping memories?

In our discussion on shared concept cells, we have so far mainly focused on neurons that are

shared between a single pair of memory engrams such as one place and one person. However,

humans are able to memorize many different persons and places, some memories forming

subgroups of associated items, others not. In order to compare our network model with

human data we therefore need to encode several subgroups of two or more of overlapping

memory engrams in the same network of N neurons. Based on the results of the previous sec-

tions, we wondered whether we can explain the experimental distribution of the number of

concepts a single neuron responds to. We find that imposing the fraction c of shared concept

cells between pairs of concepts, does not predict uniquely how many neurons are used if a

given number of memory engrams is embedded in a network. Therefore, imposing c as a target

Fig 5. Dependence of association chains on sparsity and neuronal parameters. A) Dynamical mean-field solutions for m1 and m2 in the case of two

correlated patterns. The grey dashed line shows the modulation of J0(t). B) Phase planes corresponding to the minimum (J0 = 0.7) and maximum (J0 =

1.2) value of inhibition in the case of two associated patterns. C) Minimal and maximal fraction of shared concept cells as a function of the sparsity γ
and D) of the steepness b. E) Table with the values of C and D. Parameters (unless specified): γ = 0.2%, b̂ ¼ 100, c = 20%, τθ = 1.125 s, T = 3.75 ms,

TJ0
¼ 625 ms, θi = 0 for every i.

https://doi.org/10.1371/journal.pcbi.1009691.g005

PLOS COMPUTATIONAL BIOLOGY When shared concept cells support associations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009691 December 30, 2021 11 / 44

https://doi.org/10.1371/journal.pcbi.1009691.g005
https://doi.org/10.1371/journal.pcbi.1009691


number of shared concept cells while encoding multiple concepts is not sufficient to predict

whether a given neuron responds to 3 or 5 different concepts. The question then is: to how

many concepts does a single neuron respond if several groups of overlapping engrams have

been embedded in the network?.

To study this question we consider three different algorithms that all construct memory

engrams of 200 neurons per memory with a pairwise overlap of 8 neurons in a network of

100,000 neurons, i.e., γ = 0.2% and c = 4% (Fig 6B). First we consider an iterative overlap-gen-

erating a non-hierarchical model, in which we impose a fixed target number of shared concept

cells as the only condition. Second, we consider two hierarchical models, in which every sub-

group of associated memory patterns is derived by a single “parent” pattern, which does not

take part in the subgroup. In the hierarchical generative model, only neurons that belong to

the parent pattern can be contribute to the neural representation of the patterns in the sub-

group. On the contrary, in the indicator neuron model, the parent pattern is composed of indi-

cator neurons that have a fixed probability λind of appearing in each of the subgroup’s patterns.

Non-indicator neurons can also take part in the representation of the subgroup’s patterns with

a different probability O. In other words, in the hierarchical generative model, neurons that do

not belong to the parent pattern are excluded from the representation of all of the associated

patterns in a subgroup, while in the indicator neuron model, no neuron is excluded from con-

tributing to the representation of the subgroup. When we embed subgroups of 16 engrams

with identical numbers of pairwise shared neurons, then an iterative overlap-generating model

needs about 2400 neurons out of the 100,000 available neurons, whereas two different hierar-

chically organized algorithms need about 2400 or 3000 neurons, respectively. In order to

understand which of the three algorithms explains experimental data best, we quantify the pre-

dictions of the three algorithms under the assumption that not just one, but several subgroups

of patterns are embedded in the same network and compare the predictions with experimental

data using a previously published dataset of human concept cells [6].

Fig 6. A single neuron responds to several concepts. A) Probability that a neuron responds to a given number of concepts: comparison between data

and 3 different algorithms: the hierarchical generative model and the indicator neuron model, which both build overlapping engrams in a hierarchical

way, and the iterative overlap-generating model which is a non-hierarchical algorithm. Each algorithm was run 40 times to generate the mean and error

bars (only upward bars are displayed, corresponding to one standard deviation). B) For each of the three algorithms, we generated three subgroups of

patterns containing p = 16, p = 4, or p = 2 patterns, respectivley, as well as an isolated pattern (p = 1). The table gives the expected total number of active

neurons in each subgroup in a neural network of 100000 neurons if patterns have sparsity γ = 0.2% and a pairwise fraction of shared neurons c = 4%.

https://doi.org/10.1371/journal.pcbi.1009691.g006
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The dataset contains the activity of 4066 neurons recorded from the human MTL during

the presentation of several visual stimuli. We can extract the experimental probability that a

single neuron responds to exactly k different concepts (Fig 6A, black stars). From the probabil-

ity distribution, we observe the existence of neurons responding to a large number of concepts

(10 or more), but also a sizable fraction of neurons that respond to 5 or 6 different concepts.

We will refer to those neurons as multi-responsive neurons.

To describe the data, we take into account the size and number of subgroups used in the

experimental stimulation paradigm (SI). We find that only the iterative overlap-generating

model fits the data (Fig 5C), i.e., it is the only one that predicts the correct probability of multi-

responsive neurons. Since the iterative overlap-generating model is not based on a hierarchical

generation of patterns, this suggests that the MTL encodes large subgroups of memory

engrams in a non-hierarchical way, in agreement with earlier papers [6].

Robustness to heterogeneity

Because biological neural networks present different forms of heterogeneity, we have checked

our model’s robustness to (i) the heterogeneity of frequency-current curves and (ii) dilution of

the number of synaptic connections.

In the experimental data set, each neuron is characterized by different baseline firing rates

and maximal rates in response to the preferred stimulus. We therefore introduce in our model

heterogeneous frequency-current curves characterised by a minimum and a maximum firing

rates (rmin)i and (rmax)i respectively and renormalize the network dynamics appropriately

(Materials and methods). Despite the heterogeneity, simulations indicate that memory recall

with heterogeneity is nearly indistinguishable from that without (compare Figs 7A and 2C and

7B and 4B).

Secondly, we allow the weight matrix to be diluted. Whereas so far we have assumed an

“all-to-all” connectivity, we now introduce the dilution coefficient d, which indicates the frac-

tion of actual synaptic connections compared to the N2 potential ones. Importantly, for

sparsely connected networks, the theory still contains the parameter α for memory load, except

that α is redefined to α = P/M where M is the mean number of connections per neuron (Mate-

rials and methods). Simulations in Fig 7C show that the model is robust for d = 0.8, i.e. after

dropping 20% of all possible synaptic connections and an appropriate rescaling of the average

connection strength. We have explored lower values of connection probability d, to approach

a more bio-plausible regime [27]. However, increasing the dilution of the connections takes

the dull network simulations away from the mean-field regime in which the theory is valid.

The problem could be overcame by increasing proportionally the size of the network size N,

but the computational cost grows with the square of network size N. The optimization of the

simulation of a very diluted attractor neural network is beyond the goals of the current work.

Discussion

Our results bridge observations and theories from four different fields: first, experimental

observations in the human MTL [1, 3, 6, 28, 29]; second, experimental observations of memory

engrams [18, 19]; third, the theory of association chains used to explain free memory recall [9–

12]; and fourth the classic theory of attractor neural networks [13, 25]. Our main result is that,

in networks where concepts are encoded by sparse assemblies, the number of shared concept

cells must be above chance level but below a maximal number in order to enable a reliable

encoding of associations. With 4–5% overlap between memory assemblies as reported in the

human MTL [6], association chains are possible for a range of parameters of frequency-current
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curves. Our work extends the classical mean-field formalism [15] to memory engrams that

exhibit pairwise overlap, both in a static and chain-like retrieval setting.

While sparsity limits the number of concept cells shared by chance, Hebbian learning could

induce sharing of concept cells between a small number of specific memories engrams [6]. The

Fig 7. The model is robust to heterogeneity of frequency-current curves. Full network simulations A) in absence of adaptation (equivalent to Fig 2C)

and B) in presence of adaptation and periodic inhibition. C) The model is robust to the dilutions of the synaptic connections. Full network simulations

equivalent to Fig 2C.

https://doi.org/10.1371/journal.pcbi.1009691.g007
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existence of a maximal fraction of shared neurons implies that Hebbian learning must work

with an intrinsic control mechanism so as to avoid unwanted merging of separate concepts.

Our model allows us to make novel predictions for experiments. We see from Fig 1C and

1D that stimulating an associated concept is easier in the presence of shared concept cells than

without. We extend this paradigm to several concepts and form the following prediction.

Imagine having two sub-groups of overlapping memories both involving the same person P0,

in one case related to a person P1 and in another case to a person P2. How can we dissociate

between the 2 memories (P0 and P1 vs P0 and P2)? Our model predicts that the dissociation is

possible by introducing different contexts (e.g., different places). Say P0 and P1 would be

related to context C1 (Barcelona) and P0 and P2 would be related to context C2 (Pisa), so

whenever P0 is activated together with C1, P1 will also tend to be activated but not P2 and

whenever P0 is activated in context C2, P2 will tend to be co-activated but not P1. In Fig 8 we

illustrate the experimental setup with the following simulation: we store 5 concepts, two con-

texts C1 and C2 and three persons P0, P1, P2. The context could be place C1 that has quite

strong overlap with both concepts of persons P0 and P1, but not P2. The place C2, instead has

overlap with P0 and P2 but not P1. During the simulation we give a weak ambiguous stimula-

tion to P1 and P2. If we stimulate the concept of person P0, P0 has overlap with P1 and P2 and

so far we have no bias in either way. Later we activate context C1, and this disentangles memo-

ries by favouring the recall of P0 together with P1. We emphasize that the activation of C1 pro-

vides a bias to activate concepts of Persons P0 and P1 but this bias is not strong enough on its

own to recall P0 or P1. Even the co-activation of C1 and P0, is not enough, to automatically

activate P1 on its own, in the context of the static model without adaptation, or inhibition. In

our framework the activation of one context favors the recall of concepts associated to it, and it

can be qualitative compared to neuron-specific gating model proposed in [30], where the acti-

vation of one context defines a subset of available neurons.

Association chains could form the basis of a “stream of thought” where the direction of

transitions from one concept to the next is based on learned associations. Our oscillatory net-

work dynamics is inspired by the model of Romani, Tsodyks and collaborators [9–12]. Even

though in the Romani-Tsodyks model memory engrams are independent, finite size effects

make some pairs of engrams share neurons above chance level which enables sequential recall

Fig 8. Simulation procedure that predicts that the context disentangles memories. A) schematics of the overlaps between the five stored concepts:

three persons (P0, blue; P1, orange; P2, green) and two contexts (C1, red; C2, violet) B) During the first stimulation period (indicated by the shaded

grey area) the concept of Person 0 (P0) is strongly stimulated and during the second grey period, the concept of Context 1 (C1) is strongly stimulated,

leading to the activation of P1. Person 1 (P1) and 2 (P2) are always weakly stimulated. C) Same as B, but in the second stimulation period we strongly

stimulate concept C2 instead of C1, leading to the activation of P2. Parameters: intensity of the weak stimulation = 0.02, intensity of the strong

stimulation = rmax, N = 20000, P = 5, b̂ ¼ 100, τ = 25 ms, rmax = 40 Hz, correlation within each of the two sub-groups P0-P1-C1 and P0-P2-C2, C = 0.1.

https://doi.org/10.1371/journal.pcbi.1009691.g008
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in the presence of a periodic background input. We find that in large networks with sparse

coding level (γ� 0.23%), neurons shared by chance are not enough to reliably induce the

retrieval of a chain of concepts. Sequential memory retrieval is possible only for overlaps larger

than chance, potentially representing associations learned during real-life episodes. Instead of

transitions triggered by oscillations, transitions could also be triggered by two adaptation

mechanisms that act on different time scales without the need of periodic inhibition [31–33].

Attractor networks with sparse patterns [17] and random connectivity [34] are suitable can-

didate models for biological memory because they present two features: (i) memory retrieval

after stimulation with a partial cue and (ii) sustained activity after a stimulus has been

removed. One of the points of critique of attractor networks, traditionally analyzed with the

replica [35] or cavity [36, 37] method, has been the unrealistic assumption of symmetric con-

nections. However, the derivation used here, based on dynamical systems arguments [38], can

easily be generalized to the case of asymmetric connectivity.

We discuss the possibility of allowing all patterns to share the same amount of correlation

at the very end of section “Overlapping background patterns”, in the MATERIALS AND METHODS.

In this case, we show that the standard deviation of the background noise is proportional to

P2/N. If we make the standard mean-field assumption that both P and N tend to infinity with

constant ratio P/N = α, then the quenched noise due to the presence of background patterns

would diverge. However, we can define the memory load α0 = P2/N and we can assume that P

and N tend to infinity, keeping α0 constant. In this scenario, the network capacity is drastically

reduced. Alternative approaches to keep into account the fact that some neurons are more eas-

ily recruited, can be 1. To assign heterogeneous gain functions, therefore making some neu-

rons more excitable, 2. To consider those neurons to be the “multi-responsive neurons” that

we describe in section “How does a network embed groups of overlapping memories”.

The maximal number of patterns that can be stored in an attractor neural networks has

attracted a lot of research [15, 17, 39]. However, does the hippocampus actually operate in the

regime of high memory load? Even though we do not believe that hippocampus stores words,

we may estimate a rough upper bound for the load α = P/M in the area CA3 of the hippocam-

pus from the number of words a native English speaker knows (which is about P = 30’000

according to The Economist, Lexical Facts) and the number of input connections per neuron

(which is about M = 30’000 [40]). Hence we estimate an upper bound of α about 1 if concepts

are stored in area CA3—and our theory captures such a high load.

The maximal fraction of neurons which two concepts can share before they effectively

merge into a single concept mainly depends on two dimensionless parameters: the rescaled

threshold ĥ0 ¼ h0=ðArmaxÞ and the rescaled steepness b̂ ¼ Armaxb. Since these parameters have

so far not been estimated for the human CA3 area of the hippocampus or for the MTL in gen-

eral, we checked parameters of the frequency-current curve of Macaque inferotemporal cortex

[24], for which we find cmax = 34%.

Finally, by comparing the experimental measured number of concepts a neurons responds

to and model predictions we find that the iterative overlap-generating model can predict the

number of multi-responsive neurons quite accurately. The algorithm of how to build overlap-

ping engrams plays a key role in fitting the experimental data and confirms the idea that mem-

ory engrams in the hippocampus are not hierarchically organised.

Materials and methods

We consider an attractor neural network of N rate units with firing rates ri, i = 1, . . ., N, in

which P memory engrams are stored. Each engram μ, 1� μ� P, is given by a binary random

pattern~xm ¼ ½xm
1
; . . . ; x

m

N �
T
, where x

m

i 2 f0; 1g are Bernoulli random variables with mean
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hx
m

i i ¼ g. Here and in the following, h.i indicates expectation over the random numbers x
m

i

that make up the patterns. Each neuron follows the rate dynamics of Eq (1), where the synaptic

weight from neurons j to neurons i is defined as [17, 24]

wij ¼
A

Ngð1 � gÞ

XP

m¼1

x
m

j � g
� �

x
m

i � g
� �

: ð5Þ

Here, the constant A can be interpreted as the global scale of “connection strength”. For

independent patterns, the synaptic weight wij has mean zero, hwiji = 0, and variance

hw2
iji ¼ A2P=N2.

Model without adaptation and global feedback

In the results in Figs 1 and 2, each neuron follows the Wilson-Cowan dynamics [41]

t
dri

dt
¼ � ri þ �ðhiÞ; ð6Þ

where the total input driving neuron i is

hiðtÞ ¼
XN

j¼1

wijrjðtÞ þ IiðtÞ ¼
XP

m¼1

ðx
m

i � gÞm
mðtÞ þ IiðtÞ: ð7Þ

Here, Ii is the external input to neuron i and

mmðtÞ ¼
1

Ngð1 � gÞrmax

XN

j¼1

x
m

j � g
� �

rjðtÞ: ð8Þ

is the similarity measure (also called “overlap” in the attractor network literature). It measures

the similarity (correlation) of the current network state with pattern μ; cf. Eq (2). In Figs 1C

(during the first stimulation period), 2C and 6 the external input Ii ¼ Iextx1

i is positive during

stimulation for all neurons that belong to the assembly of pattern μ = 1, and zero for all other

neurons.

In Eq (6), the input is passed through the transfer function ϕ (also called f-I curve in the

Results section), which is chosen to be a sigmoid:

�ðhÞ ¼
rmax

1þ e� bðh� h0Þ
: ð9Þ

The parameters that define the transfer function can be interpreted as follows: rmax is the

maximal firing rate, b is the steepness of the transfer function and h0 is the bias which is com-

monly interpreted as firing threshold. While h0 is a hard threshold for b!1, at finite b the

model exhibits a soft threshold allowing firing activity even below h0.

Model with adaptation and global inhibitory feedback

For Fig 4 of Results, we added adaptation and a global inhibitory feedback to the model as

described in previous studies [9–12] (see also [42] for a similar rate model with adaptation).

Specifically, we add two negative feedback terms to the input potential:

hiðtÞ ¼
XN

j¼1

wijrjðtÞ � yiðtÞ �
J0ðtÞ
gN

XN

j¼1

rjðtÞ þ Ii; ð10Þ
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First, the variable θi(t) models neuron-specific firing-rate adaptation via the first-order

kinetics

ty
dyi

dt
¼ � yi þ Dyri: ð11Þ

Here, τθ is the adaptation time constant and Dθ determines the strength of adaptation. Note

that this adaptation model with a hyperpolarizing feedback current is equivalent to a model in

which adaptation is implemented as an increase in the threshold h0 + θi(t).
Second, the global inhibitory feedback term proportional to J0(t) (third term in Eq (10))

provides a clock signal that triggers transitions between attractors. The strength of the global

feedback, J0(t), is modulated periodically in time:

J0 ¼
1

2
Jmax � Jminð Þsin

2p

TJ0

t �
p

2

 !

þ
1

2
Jmax þ Jminð Þ ð12Þ

Importantly, inhibition proportional to the summed activity of the network units penalizes

network configurations with many active neurons and therefore reduces stability of the dou-

ble-retrieval state where two memories are recalled together. Here, the strength J0(t) of the

global feedback is modulated periodically between values 0.7 and 1.2 with a sinusoidal time

course of period TJ0
that sets the time scale of transitions between memories. Note that the

model without adaptation and global feedback is a special case of the full model by setting Dθ =

0 and J0(t)� 0. For the results of Fig 3, J0 is a constant parameter and Dθ = 0.

Non-dimensionalization of the model

The calculations below are considerably simplified if the model is nondimensionalized. We

take into account that rmax has units of 1/time and the parameter A has units of current � time

and measure in the following time in units of r� 1
max and current input in units of Armax.

Model without adaptation and global feedback. Using the dimensionless quantities

ĥi ¼
hi

Armax
; ĥ0 ¼

h0

Armax
; b̂ ¼ bArmax; r̂ i ¼

ri

rmax
ð13Þ

ŵij ¼
wij

A
; t̂ ¼ trmax; Î iðtÞ ¼

IiðtÞ
Armax

; ð14Þ

the nondimensionalized model without adaptation reads

t̂
dr̂i

dt̂
¼ � r̂ i þ �̂ðĥiÞ; with ĥi ¼

XN

j¼1

ŵijr̂ j þ Î i ð15Þ

with a transfer function �̂ðĥÞ ¼ 1=f1þ exp½� b̂ðĥ � ĥ0Þ�g.

Model with adaptation and global feedback. Introduction of further dimensionless

quantities

t̂y ¼ tyrmax; ŷ ¼
y

Armax
; D̂y ¼

Dy

A
; Ĵ 0ðt̂Þ ¼

J0ðt̂=rmaxÞ

A
ð16Þ
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leads to the nondimensionalized model with adaptation

t̂
dr̂i

dt̂
¼ � r̂ i þ �̂ðĥiÞ; ð17Þ

t̂y
dŷ i

dt̂
¼ � ŷ i þ D̂yr̂ i

ð18Þ

with input

ĥi ¼
XN

j¼1

ŵijr̂ j � ŷ i �
Ĵ 0ðtÞ
gN

XN

j¼1

r̂ jðtÞ þ Î i: ð19Þ

Review of attractor theory

Starting from the overlap definition Eq (2), we can write equations for the overlaps variables.

We first focus on the model without adaptation and global feedback. For this case, we follow

an approach well-known in literature [17, 38]. Taking the temporal derivative of the similarity

mμ yields

t̂
dmm

dt̂
¼

1

Ngð1 � gÞ

XN

j¼1

x
m

j � g
� �

t̂
dr̂ j

dt̂
: ð20Þ

By inserting the expression for the single neuron dynamics Eq (15) and recognizing the

overlap definition Eq (2), we obtain:

t̂
dmm

dt̂
¼ � mm þ Fmðm

1; . . . ;mPÞ: ð21Þ

with

Fmðm1; . . . ;mPÞ ¼
1

Ngð1 � gÞ

XN

j¼1

x
m

j � g
� �

�̂ ĥj

� �
: ð22Þ

In this equation, the dependence on the overlaps m1, . . ., mP is contained in the input term

ĥj. From Eq (15) and by using the definition of the weights wij, Eq (5), we have

ĥi ¼
XP

m¼1

ðx
m

i � gÞm
m þ Î i: ð23Þ

In what follows, we are interested in finding equilibrium solutions of Eq (21), for which

mμ = Fμ(m1, . . ., mP). Because we are interested in pattern retrieval, we consider, without loss

of generality, the retrieval of pattern 1. To this end, we assume that among all mμ, only m1 is

significantly larger than zero. This network state could be the result of a stimulation in the

direction of pattern 1: Î iðtÞ ¼ ÎðtÞx1

i . Under this assumption we can re-write the input term ĥi

isolating the contribution from m1

ĥi ¼ ðx
1

i � gÞm
1 þ

XP

m¼2

ðx
m

i � gÞm
m þ ÎðtÞx1

i : ð24Þ

We call the patterns that are not recalled “background patterns”; in the present case, these

are all patterns for which μ� 2. The second term on the r.h.s of Eq 24 represents the
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contribution from the background patterns causing some degree of heterogeneity of the input

potential for neurons with the same selectivity to pattern 1. For large P, this heterogeneity can

be captured by replacing the term
PP

m¼2
ðx

m

i � gÞm
m by a Gaussian random variable with mean

zero and variance

s2 ¼
1

N

XN

i¼1

XP

m¼2

XP

n¼2

x
m

i � g
� �

x
n

i � g
� �

mmmn ¼ gð1 � gÞ
XP

n¼2

ðmnÞ
2

ð25Þ

To obtain the result in Eq (25), we used the assumption that patterns x
m

i and x
n

i are uncorre-

lated, and the fact that only the term for μ = ν survives because

hðx
m

i x
n

i þ g
2 � gx

n

i � gx
m

i Þii ¼ dmngð1 � gÞ. Here and in the following, the brackets hxiii of a var-

iable xi denotes the population average hxiii ¼
1

N

PN
i¼1

xi. In the next passages, we compute

(mμ)2, μ 6¼ 1, in the large network limit N!1. For μ = 2, . . ., P, we expand Eq (22) around

mμ = 0 up to first order in mμ,

Fmðm1; . . . ;mPÞ �
1

gð1 � gÞN

XN

j¼1

ðx
m

j � gÞ�̂ðĥjÞjmm¼0 þ ðx
m

j � gÞ
2
�̂ 0ðĥjÞjmm¼0m

m

h i
: ð26Þ

At equilibrium, mμ = Fμ(m1, . . ., mP), and we thus have

mm 1 �
XN

j¼1

ðx
m

j � gÞ
2
�̂ 0ðĥjÞ

gð1 � gÞN

 !

¼
1

gð1 � gÞN

XN

j¼1

x
m

j � g
� �

�̂ðĥjÞ; m � 2: ð27Þ

On the left hand side of the last expression, we can make some simplification, utilizing the

fact that x
m

j is uncorrelated with ϕ0(hj) in the N!1 limit:

lim
N!1

1

N

XN

j¼1

ðx
m

j � gÞ
2
�̂ 0ðĥjÞ

gð1 � gÞ
¼ lim

N!1

1

N

XN

j¼1

�̂0ðĥjÞ ¼ h�̂
0ðĥiÞii: ð28Þ

We can therefore define the quantity q≔ h�̂ 0ðĥiÞii as the expectation of �̂ 0ðĥiÞ over neu-

rons. As a consequence, mμ can be written as

mm ¼
1

gð1 � gÞð1 � qÞN

XN

j¼1

x
m

j � g
� �

�̂ðĥjÞ: ð29Þ

Using this equation, we can finally compute the square of mν for ν� 2:

ðmnÞ
2
¼

1

g2ð1 � gÞ
2
ð1 � qÞ2N2

XN

i¼1

XN

j¼1

x
m

i � g
� �

x
m

j � g
� �

�̂ðĥiÞ�̂ðĥjÞ; ð30Þ

¼
1

g2ð1 � gÞ
2
ð1 � qÞ2N2

XN

i¼1

ðx
m

i � gÞ
2
½�̂ðĥiÞ�

2
; ð31Þ

¼
p

gð1 � gÞð1 � qÞ2N
: ð32Þ

where p≔ h�̂2ðĥiÞii. Similarly as in Eq (25), we used that in the double sum
PN

i¼1

PN
j¼1

, only
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the term i = j survives:

1

N2

XN

i¼1

XN

j¼1

x
m

i � g
� �

x
m

j � g
� �

�̂ðĥiÞ�̂ðĥjÞ ¼
1

N2

XN

i¼1

ðx
m

i � gÞ
2
½�̂ðĥiÞ�

2
þ

1

N2

XN

i¼1

XN

j6¼i

x
m

i x
m

j � gx
m

i � gx
m

j þ g
2

� �
�̂ðĥiÞ�̂ðĥjÞ:

ð33Þ

The population average in the last term factorizes owing to the independence of x
m

i and ĥi

in the limit N!1, and thus vanishes:

1

N2

XN

i¼1

XN

j6¼i

x
m

i x
m

j � gx
m

i � gx
m

j þ g
2

� �
�̂ðĥiÞ�̂ðĥjÞ ¼

1

N2

XN

i¼1

XN

j6¼i

x
m

i x
m

j � gx
m

i � gx
m

j þ g
2

� �
" #

�
1

N2

XN

i¼1

XN

j6¼i

�̂ðĥiÞ�̂ðĥjÞ

" #

¼ 0

ð34Þ

Here, we have used that the first factor is a vanishing population average: γ2 − 2γ2 + γ2 = 0.

The standard deviation of the neuron-to-neuron variability (heterogeneity), Eq (25), is thus

s ¼
ffiffiffiffiffiffi
aR
p

; R≔
p

ð1 � qÞ2
: ð35Þ

As a result, the input potentials, Eq (24), can be expressed at equilibrium as

ĥi ¼ ðx
1

i � gÞm
1 þ

ffiffiffiffiffiffi
aR
p

Zi þ I � x1

i ; ð36Þ

where Zi* N(0, 1) are Gaussian random variables. Therefore, we find from Eq (22) that the

overlap m1 at equilibrium satisfies

m1 ¼ F1ðm1Þ≔
1

gð1 � gÞ
hðx

1

i � gÞ�̂ðĥiÞii; ð37Þ

where ĥi is given by Eq (36). The population averages h�ii can be treated as expectations over

the independent random variables x
1

i and Zi. On the one hand, x
1

i is a Bernoulli variable such

that x
1

i ¼ 1 with probability P1 = γ and x
1

i ¼ 0 with probability P0 = 1 − γ. On the other hand,

Zi is a standard normal random variable with probability density pZðzÞ ¼ expð� z2=2Þ=
ffiffiffiffiffiffi
2p
p

.

We can therefore rewrite the population average in Eq (37) explicitly resulting in

F1ðm1Þ ¼
1

gð1 � gÞ

X

k¼0;1

Pk k � gð Þ

Z

�̂ðĥkðm
1; zÞÞe

�

z2

2
dz
ffiffiffiffiffiffi
2p
p ð38aÞ

where we defined

ĥkðm; zÞ ¼ ðk � gÞmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aRðmÞ

p
z þ Ik; k 2 f0; 1g: ð38bÞ

RðmÞ ¼
pðmÞ

½1 � qðmÞ�2
ð38cÞ

qðmÞ ¼
X

k¼0;1

Pk

Z

�̂ 0ðĥkðm; zÞÞe
� z2

2
dz
ffiffiffiffiffiffi
2p
p ð38dÞ

pðmÞ ¼
X

k¼0;1

Pk

Z

�̂2ðĥkðm; zÞÞe
� z2

2
dz
ffiffiffiffiffiffi
2p
p : ð38eÞ
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Dynamical mean-field equations

Approximating the function F1(m1, . . ., mP) in the dynamical Eq (21) by the simplified func-

tion F1(m1) derived in the previous section, the retrieval of pattern 1 can be described by the

closed dynamical mean-field equation

t̂
dm1

dt̂
¼ � m1 þ F1ðm

1Þ: ð39Þ

For small network load, α� 1, the effect of background patterns in Eqs (36) and (38b) can

be neglected. In this case, we can set mν = 0 for ν� 2 and it is straightforward to calculate

F1(m1). The result is Eq (38) with αR = 0:

F1ðm1Þ ¼
1

gð1 � gÞ

X

k¼0;1

Pk k � gð Þ�̂ k � gð Þmþ Ikð Þ: ð40Þ

Note that the mean-field dynamics Eqs (39) and (40) in the small-load limit (α = P/N! 0

as N!1) is exact.

For large network load α (i.e. α = O(1) as N!1), the effect of background patterns may

not be negligible. As shown above, the equilibrium solution in this case is given by Eqs (37)

and (38). For the non-stationary dynamics Eq (39), we still use Eq (38) for F1(m1) even though

this equation has been derived under the assumption of stationarity. This means that we

assume that the overlaps with background patters are always at their equilibrium value while

the overlap variables with retrieved patterns evolve in time. While this assumption is not

strictly true, it gives results in excellent agreement with full network simulations (Fig 2C). In

other words, the mean-field dynamics in Fig 2C is correct before stimulus onset and after the

system has retrieved pattern 1, whereas during transients the dynamics with F1(m1) given by

Eq (38) is an approximation. Moreover, we argued in the discussion that assuming a small or

even negligible network load α� 0 is a biologically plausible assumption for the human MTL.

In this case, the dynamical mean-field equations for α = 0, Eqs (39) and (40), are valid.

Mean-field equations for two overlapping patterns

Overlap between two engrams is implemented as two patterns with a non-zero Pearson corre-

lation coefficient. Without loss of generality, we take patterns~x1 and~x2 to be correlated, while

all other P − 2 patterns are independent. We define the correlation C between the two patterns

as the Pearson correlation coefficient (covariance/variance):

C ¼
Covðx1

i ; x
2

i Þ

Varðxmi Þ
¼

P11 � g
2

gð1 � gÞ
; ð41Þ

where P11 ¼ Pðx1

i ¼ 1; x
2

i ¼ 1Þ ¼ hx
1

i � x
2

i i is the joint probability of a neuron to be selective to

both patterns. We generate correlated patterns with mean activity hx
1

i ii ¼ hx
2

i ii ¼ g and corre-

lation coefficient C, using the procedure described in SI. The fraction c of shared neurons is

related to C by the identity c = C(1 − γ) + γ.

We are interested in the retrieval dynamics of the correlated patterns~x1 and~x2.

The derivation of the system of mean-field equations in case two correlated pattern case in

Eq (43) is analogous to that described in the section above. To that end, we also assume that

the stimulus only depends on the selectivities x
1

i and x
2

i of the neuron, i.e. Î iðtÞ ¼ Ix1
i ;x

2
i
ðtÞ

for all neurons i = 1, . . ., N. The input term hi has now two non-negligible terms, both from
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~x1 and~x2:

ĥiðm1;m2Þ ¼ ðx
1

i � gÞm
1 þ ðx

2

i � gÞm
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRðm1;m2Þ

p
Zi þ Ix1

i ;x
2
i
ðtÞ; ð42Þ

where

t̂
dm1

dt
¼ � m1 þ

1

gð1 � gÞ
hðx

1

i � gÞ�̂ðĥiÞii ð43aÞ

t̂
dm2

dt
¼ � m2 þ

1

gð1 � gÞ
hðx

2

i � gÞ�̂ðĥiÞii ð43bÞ

q ¼ h�̂ 0 ðĥiÞii ð43cÞ

p ¼ h�̂2ðĥiÞii ð43dÞ

Rðm1;m2Þ ¼
p

ð1 � qÞ2
; ð43eÞ

and Zi* N(0, 1), i = 1, . . ., N are independent, standard normal random variables. Analogous

to Eq (38) we compute the population averages in Eq (43) explicitly leading to the mean-field

dynamics

t̂
dm1

dt
¼ � m1 þ F1ðm

1;m2Þ ð44aÞ

t̂
dm2

dt
¼ � m2 þ F2ðm

1;m2Þ: ð44bÞ

Here, the nonlinear functions F1 and F2 are given by (μ = 1, 2)

Fmðm1;m2Þ ¼
X

x1¼0;1

X

x2¼0;1

xm � g
gð1 � gÞ

Px1x2

Z
dz
ffiffiffiffiffiffi
2p
p e� z2

2 �̂ðĥx1x2ðm1;m2; zÞÞ ð44cÞ

with

ĥx1x2ðm1;m2; zÞ ¼
X

n¼1;2

ðxn � gÞmn þ Ix1 ;x2ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRhðm1;m2Þ

p
z: ð44dÞ

This function can be interpreted as the mean-field input potential of a neuron with selectiv-

ity x
1

i ¼ x1 and x
2

i ¼ x2, background variability Zi = z, in the case when the network has over-

lap m1 and m2 with patterns 1 and 2, respectively. The last term in Eq (44d) captures the

influence of background patterns on the mean-field dynamics of m1(t) and m2(t). This influ-

ence is quantified by the function Rh(m1, m2) representing the mean squared overlap of the

system with the background patterns μ = 3, . . ., P. We used a subscript h for Rh(m1, m2) to

indicate that R depends functionally on the mean-field potential ĥx1x2ðm1;m2; zÞ. This func-

tional is given by

Rhðm1;m2Þ ¼
p

ð1 � qÞ2 ð44eÞ

q ¼
X

x1¼0;1

X

x2¼0;1

Px1 ;x2

Z

�̂ 0ðĥx1x2ðm1;m2; zÞÞe� z2

2
dz
ffiffiffiffiffiffi
2p
p ð44fÞ

p ¼
X

x1¼0;1

X

x2¼0;1

Px1 ;x2

Z

�̂2ðĥx1x2ðm1;m2; zÞÞe� z2

2
dz
ffiffiffiffiffiffi
2p
p : ð44gÞ
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The mean-field input potentials ĥx1x2ðm1;m2; zÞ, x1, x2 2 {0, 1}, needed in Eq (44c) are

obtained from the self-consistent solution of the functional Eqs (44d)–(44g), details are in Sec-

tion “Numerical solutions”. Eq (44) simplify significantly for α = 0, which is the parameter

choice of most figures, so it is worth writing explicitly the m1 and m2 dynamics in the case of

negligible load:

t̂
dm1

dt
¼ � m1 þ

1

gð1 � gÞ
P11ð1 � gÞ�̂ ð1 � gÞðm

1 þm2Þ þ I1 þ I2½ �þ
n

P10ð1 � gÞ�̂½ð1 � gÞm1 � gm2 þ I1��

P01g�̂½� gm1 þ ð1 � gÞm2 þ I2� � P00g�̂½� gðm1 þm2Þ�
o
;

ð45aÞ

t̂
dm2

dt
¼ � m2 þ

1

gð1 � gÞ

�

P11ð1 � gÞ�̂ ð1 � gÞðm
1 þm2Þ þ I1 þ I2½ ��

P10g�̂½� gm1 þ ð1 � gÞm2 þ I1�þ

P01ð1 � gÞ�̂½ð1 � gÞm1 � gm2 þ I2� � P00g�̂½� gðm1 þm2Þ�

�

:

ð45bÞ

Here, we have used the specific form Ix1, x2(t) = I1(t)x1 + I2(t)x2, x1, x2 2 {0, 1}, of the external

currents, where the coefficients I1(t) and I2(t) are the external input currents given selectively

to the neurons of pattern 1 and 2, respectively.

The same procedure can be generalized to generate several correlated binary patterns, as in

Fig 2B. The generalization is straightforward, we can re-write the system in Eq (44) with one

dynamical equations for each correlated pattern and add the relative terms in the input

ĥðx1; ::; xm; zÞ. Finally we need the joint probabilities Px1 ;x2 ;x3 and Px1 ;x2;x3 ;x4 . The general formula

for the joint probability is given in Eq (97) below. For instance, for three correlated patterns,

the mean-field dynamics analogue to Eq (44) is given by

t̂
dm1

dt
¼ � m1 þ

1

gð1 � gÞ
hðx

1

i � gÞ�̂ðĥiÞii ð46aÞ

t̂
dm2

dt
¼ � m2 þ

1

gð1 � gÞ
hðx

2

i � gÞ�̂ðĥiÞii ð46bÞ

t̂
dm3

dt
¼ � m3 þ

1

gð1 � gÞ
hðx

2

i � gÞ�̂ðĥiÞii ð46cÞ

q ¼ h�̂ 0 ðĥiÞii ð46dÞ

p ¼ h�̂2ðĥiÞii ð46eÞ

Rðm1;m2;m3Þ ¼
p

ð1 � qÞ2 ð46fÞ

where

ĥiðm1;m2;m3Þ ¼ ðx
1

i � gÞm
1 þ ðx

2

i � gÞm
2 þ ðx

3

i � gÞm
3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRðm1;m2;m3Þ

p
Zi þ Ii: ð47Þ
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Excluding self-interaction

In Section “Review: mean-field equations for independent patterns” we show the derivation of

the mean-field equations for the retrieval of one pattern in an attractor neural network with

self-connections (“autapses”). To make the network more biologically plausible and to avoid

the creation of local minima around the attractors corresponding to the stored patterns, we

now consider the case where self-interactions are excluded [38]. The effect of excluding the

self-interaction term on input terms in Eqs (38a) and (44d) is captured by a the correction

term [38]:

qa�̂ðĥÞ
ð1 � qÞ

: ð48Þ

Then, Eq (44d) becomes

ĥx1x2ðm1;m2; zÞ ¼ x1 � gð Þm1 þ x2 � gð Þm2 þ
qa�ðĥx1x2ðm1;m2; zÞÞ

ð1 � qÞ
þ

ffiffiffiffiffi
ar
p

z þ Ix1 ;x2ðtÞ; ð49Þ

where again Ix1 ;x2ðtÞ ¼ I1ðtÞx1 þ I2ðtÞx2 and x1, x2 2 {0, 1}. In our simulation, we used the

same stimulation for both patterns, i.e. I1(t) = I2(t)� I(t). The input term in Eq (49), is solved

recursively in Fig 2B, left hand side.

Overlapping background patterns

In Fig 2B we explore the possibility that the maximal fraction of shared neurons cmax might be

influenced by the presence of Pearson’s correlation between pairs of background patterns.

Moreover, the assumption that there are many subgroups of overlapping memory engrams

seems more biologically plausible. If we let the background patterns to be overlapping in sub-

groups of 2 patterns each, the variable R in the mean-field equations of Eq (43) needs to be

replaced by In this section, we provide the derivation of the critical correlation in the presence

of correlations between background patterns (main text, Fig 2B left).

To start with, let us suppose that each pattern is correlated with just one other, so a given

pattern~xn is only correlated with one other pattern~xn
0

, ν 6¼ ν0. In the following, the prime nota-

tion ν0 denotes for any given pattern ν the index of the associated correlated pattern. What

changes, compared to the derivation in Section “Review of attractor theory”, is the variance of

the heterogeneity term in Eq (25), hs2i ¼
P

m;n>2
hðx

m

i x
n

i � gx
n

i � gx
m

i þ g
2Þimmmn, where pat-

terns are pair-wise correlated. For a fixed pair (ν, ν0), we obtain

hðx
m

i x
n

i � gx
n

i � gx
m

i þ g
2Þi¼ dmngð1 � gÞ þ dm;n0 ðP11 � g

2Þ; ð50Þ

¼ gð1 � gÞ½dm;n þ dm;n0C�; ð51Þ

where the second term at the right hand side captures the effect of correlation. Background

patterns can still be approximated by a Gaussian variable in the large network limit, in this

case with variance:

hs2i ¼ gð1 � gÞ
XP

n¼3

½ðmnÞ
2
þ Cmnmn0 �: ð52Þ

In order to compute Eq (52), we need to derive (mν)2 and mnmn0 . In what follows, we use

the same definition of q and p as in Eq (38). Let us start from writing mν at the first-order
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Taylor expansion for mν and mn0 both small:

Fnðm1; . . . ;mPÞ �
1

gð1 � gÞN

XN

i¼1

x
n

i � g
� �

�̂ðĥiÞ þ
1

gð1 � gÞN

XN

i¼1

ðx
n

i � gÞ
2
�̂ 0ðĥiÞm

n

þ
1

gð1 � gÞN

XN

i¼1

x
n

i � g
� �

x
n0

i � g
� �

�̂ 0ðĥiÞm
n0

ð53Þ

Then, following analogous passages as Eqs (26–29) we obtain the expressions:

ð1 � qÞmn ¼
1

gð1 � gÞN

XN

i¼1

x
n

i � g
� �

�̂ðĥiÞ þ qCmn0 ; ð54aÞ

ð1 � qÞmn0 ¼
1

gð1 � gÞN

XN

i¼1

x
n0

i � g
� �

�̂ðĥiÞ þ qCmn: ð54bÞ

Eq (54) is a linear system of the form:

Dmn ¼ Bþ qCmn0 ð55aÞ

Dmn0 ¼ B0 þ qCmn ð55bÞ

where B ¼ 1

gð1� gÞN

PN
i¼1

x
n

i � g
� �

�̂ðĥiÞ, D = (1 − q), similarly, B0 ¼ 1

gð1� gÞN

PN
i¼1

x
n0

i � g
� �

�̂ðĥiÞ,

and C ¼ P11� g
2

gð1� gÞ
. System Eq (54) has solutions

mn ¼
DBþ qCB0

D2 � C2
ð56aÞ

mn0 ¼
DB0 þ qCB
D2 � C2

: ð56bÞ

We are now ready to write the expressions for (mν)2 and mnmn0 :

ðmnÞ
2
¼

D2B2 þ ðqCÞ2ðB0Þ2 þ 2DqCBB0

ðD2 � ðqCÞ2Þ2
;

mnmn0 ¼
D2BB0 þ qCDðB0Þ2 þ qCDB2 þ C2BB0

ðD2 � ðqCÞ2Þ2
;

ð57Þ

where B and B0 are analogous to the term on right hand side of Eq (27): ðB0Þ2 ¼ B2 ¼
p

Ngð1� gÞ.

Note that B2 and B02 are equal in expectation, however BB0 6¼ B2 in expectation due to the cor-

relation between ξν and x
nu0

. The last missing piece is the cross term BB0 which can also be
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calculated analogously to Eq (32):

BB0 ¼
1

½Ngð1 � gÞ�2
XN

i¼1

XN

j¼1

x
n

i � g
� �

x
n0

j � g
� �

�̂ðĥiÞ�̂ðĥjÞ
h i

¼

¼
1

½Ngð1 � gÞ�2
XN

i¼1

P11 � g
2ð Þ½ ��̂2ðĥiÞ ¼

¼
P11 � g

2

N½gð1 � gÞ�2
p ¼

¼
Cp

Ngð1 � gÞ
:

ð58Þ

In the first passage, we used the fact that the first order approximations of �̂ðĥiÞ and �̂ðĥjÞ

are independent (see Eq (53). Plugging the expressions for (mν)2 and mnmn0 into Eq (52), we

obtain the variance

hs2i ¼
gð1 � gÞ

ðD2 � q2C2Þ
2
�

�
X

n�3

fD2B2 þ q2C2ðB0Þ2 þ 2BDqCB0 þ CDBB0 þ DqC2B2 þ DqC2ðB0Þ2 þ q2C2Bb0g ¼

¼
ap

ðD2 � q2C2Þ
2

D2 þ q2C2 þ 4DqC2 þ q2C4½ �

ð59Þ

Finally we can write the expression for the effective R = hσ2i/α, under the effect of pairwise

correlation between background patterns:

R ¼
p

½D2 � ðqCÞ�2
gð1 � gÞ D2 þ q2C2 þ 4DqC2 þ q2C4½ � ¼

¼
p

½D2 � ðqCÞ�2
ð1 � qÞ2 þ q2C2 þ 4ð1 � qÞqC2 þ ð1 � qÞ2C4
� �

:

ð60Þ

The so obtained expression for R can be substituted to that of system Eq (43).

The derivation of Eq (60) can be extended to the case in which background patterns share

correlation C between non overlapping groups of exactly p patterns. To do so, we need to

extend the system in Eq (55b) linearly:

M ¼

D � qC � qC � � � � qC
� qC D � qC � � � � qC
� qC � qC D � � � � qC

..

. ..
. ..

. . .
. ..

.

� qC � qC � qC � � � D

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

�

mn

mn0

mn00

..

.

mnn0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

B
B0

B00

..

.

Bn0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð61Þ

where M is a p × p matrix. In order to find the solution ~mn ¼ M� 1~B of system Eq (61) we need
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to invert the matrix M. Indeed matrices M of the form

fMgij ¼

( D if i ¼ j

� qC if i 6¼ j
ð62Þ

are invertible. In order to derive the inverted matrix we can rewrite the matrix M as M = A −
qCvvT, where A is diagonal with entries Ai,i = D − qC and v is a column vector of all ones. If M
and A are both invertible, we can use the Sherman-Morrison formula:

M� 1 ¼ ðA � qCvvTÞ
� 1
¼ A� 1 �

� qCA� 1vvTA� 1

1 � qCvTA� 1v
: ð63Þ

Since A is diagonal, then ðA� 1Þi;i ¼ ðAi;iÞ
� 1
¼ 1

DþqC. Then

fM� 1gij ¼

1

Dþ qC
�

1

cðD � qCÞ2
if i ¼ j

�
1

cðD � qCÞ2
if i 6¼ j

8
>>><

>>>:

ð64Þ

where the constant c ¼ � 1

qCþ n 1

DþqC. Terms can be re-arranged to obtain:

fM� 1gij ¼
1

Z

(Dþ qC � 1 if i ¼ j

� 1 if i 6¼ j
ð65Þ

where

Z ¼
� Dþ ðn � 1ÞqC

qCðD þ qCÞ2
: ð66Þ

As a final note, we consider the case in which all patterns are equally correlated, then

hs2i ¼
X

n�3

X

m�3

P
N
gð1 � gÞðmnÞ

2
þ

P2

N
ðP11 � g

2Þmnmm

� �

ð67Þ

The second term in the variance diverges as N!1 because P = αN unless P11 = γ2. We con-

clude that, in the limit N!1 and assuming that the ration between patterns and neurons is a

finite constant α> 0, it is not possible to allow a correlation C> 0 between all stored patterns.

Extract numerically the maximal correlation

In order to numerically compute the maximal correlation, we use the bifurcation diagram in

Fig 9B: the fixed points in the phase-plane are projected on the m1-axis and their positions are

plotted as C increases. From the bifurcation diagram we can extract the value Cmax at which

the single retrieval states merge with the saddle points and disappear. Thus, at C = Cmax we

have a saddle-node bifurcation (see the derivation of Eq (4)).

The value of the maximal correlation Cmax can be calculated analytically in the limit of infi-

nite steepness b!1, vanishing load α = 0, vanishing sparseness and load, γ! 0 and α = 0.

This value matches the one extracted from the bifurcation plot in Fig 9C.

Mean-field dynamics in the presence of adaptation and global feedback

In order to derive the mean-field equations for the model with adaptation and global feedback,

we consider the simplest case, in which only two patterns are correlated (~x1 and~x2) while all

the others are independent. Analogously to Section “Mean field equations for two correlated
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patterns”, we can group neurons into four homogeneous populations (in the presence of back-

ground patterns, the neural populations will be slightly inhomogeneous): neurons that are

selective to both patterns (x
1

i ¼ x
2

i ¼ 1), neurons selective to pattern 1 but not 2

(x
1

i ¼ 1; x
2

i ¼ 0), neurons selective to pattern 2 but not 1 (x
1

i ¼ 0; x
2

i ¼ 1) and neurons that are

selective to neither pattern 1 or 2 (x
1

i ¼ x
2

i ¼ 0). The probability for a neuron to belong to pop-

ulation (x1, x2), i.e. x
1

i ¼ x1 and x
2

i ¼ x2, is the joint probability Px1 ;x2 in Eq (93). Furthermore

each population (x1, x2) is characterized by a different firing threshold yx1 ;x2ðtÞ. Analogous to

the derivation of Eq (44), we obtain the six-dimensional mean-field dynamics:

t̂
dm1

dt
¼ � m1 þ F1ðm

1;m2; fŷx1x2gÞ; ð68aÞ

t̂
dm2

dt
¼ � m2 þ F2ðm

1;m2; fŷx1x2gÞ; ð68bÞ

t̂y
dŷx1x2

dt
¼ � yx1x2 þ ŷ0 þ D̂yr̂ x1x2ðm1;m2; ŷx1x2Þ; x1; x2 2 f0; 1g: ð68cÞ

Here, we have introduced the nonlinear functions

Fmðm
1;m2; fŷx1x2gÞ ¼

X

x1¼0;1

X

x2¼0;1

Px1 ;x2

xm � g
gð1 � gÞ

r̂ x1x2ðm1;m2; ŷx1x2Þ; m ¼ 1; 2 ð68dÞ

r̂ x1x2ðm1;m2; ŷx1x2Þ ¼

Z

�̂ðĥx1x2ðm1;m2; ŷx1x2 ; zÞÞe�
z2

2
dz
ffiffiffiffiffiffi
2p
p ; ð68eÞ

with the mean-field input potential

ĥx1 ;x2ðm1;m2; fŷx1x2g; zÞ ¼ ðx1 � gÞm1 þ ðx2 � gÞm2 þ
ffiffiffiffiffiffi
aR
p

z

� ŷx1x2 �
Ĵ 0ðtÞ
g

X

k1¼0;1

X

k2¼0;1

Pk1;k2
r̂ k1k2
ðm1;m2; ŷk1k2

Þ:
ð68fÞ

and the mean squared overlap of background patterns R given by

R ¼
p

ð1 � qÞ2
ð68gÞ

q ¼
X

x1¼0;1

X

x2¼0;1

Px1 ;x2

Z

�̂ 0 ĥx1 ;x2ðm1;m2; fŷx1x2g; zÞ
� �

e� z2

2
dz
ffiffiffiffiffiffi
2p
p ð68hÞ

p ¼
X

x1¼0;1

X

x2¼0;1

Px1 ;x2

Z

�̂2 ĥx1 ;x2ðm1;m2; fŷx1x2g; zÞ
� �

e� z2

2
dz
ffiffiffiffiffiffi
2p
p ð68iÞ

In order to obtain r̂ x1x2ðm1;m2; ŷx1x2Þ in Eqs (68c), (68d) and (68e)–(68i) need be solved

self-consistently (for more details, see Section “Numerical Solutions”).

Analogously to the previous section, we can extract numerically the minimal and maximal

correlation using the bifurcation analysis described in the Supplementary Information (S2 Fig).

Stability of the fixed points

In order to compute the stability of the fixed points in Fig 9, we compute the eigenvalues of

the Jacobian matrix J of the m1 − m2 dynamics at the point location in the m1 − m2 plane.
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The Jacobian matrix is symmetric and the three independent entries are computed from Eq

(43) as:

J11ðm1;m2Þ ¼
@ð� m1 þ F1ðm1;m2ÞÞ

@m1

¼ � 1þ
A

gð1 � gÞ
hðx

1

i � gÞ
2
�
0
ðhiÞii

ð69Þ

Fig 9. A) Four phase-planes of the dynamics of variables m1 and m2 for different values of correlation C. Fixed points are color-coded by their stability:

blue = stable, green = saddle and red = unstable. B) Bifurcation diagram. The projection of the fixed points position on m1 is plotted against C. The

critical correlation Cmax is highlighted by the black dashed line. C) Same as B, but in the limit b̂ !1, which leads to C! ĥ0. Parameters: γ = 0.002,

b̂ ¼ 100, ĥ0 ¼ 0:25, α = 0.

https://doi.org/10.1371/journal.pcbi.1009691.g009
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J12ðm1;m2Þ ¼
@ð� m1 þ F1ðm1;m2ÞÞ

@m2

¼ J21ðm1;m2Þ ¼
A

gð1 � gÞ
hðx

1

i � gÞðx
2

i � gÞ�
0
ðhiÞii

ð70Þ

J22ðm1;m2Þ ¼
@ð� m2 þ F2ðm1;m2ÞÞ

@m2

¼ � 1þ
A

gð1 � gÞ
hðx

2

i � gÞ
2
�
0
ðhiÞÞii

ð71Þ

In the numerical computation of the J, we exploited the symmetries under exchange of m1

and m2: J22(m1, m2) = J11(m2, m1) and J21(m1, m2) = J12(m2, m1).

Analogously to the system in Eq (43), also the Jacobian matrix can be adapted to the case of

3 or 4 correlated pattern, using the joint probabilities in Eq (97) and the generic forms

Jm;mðmm;mmÞ ¼ � 1þ
A

gð1 � gÞ
hðx

m

i � gÞ
2
�
0
ðhiÞii; ð72Þ

Jm;nðmm;mnÞ ¼
A

gð1 � gÞ
hðx

m

i � gÞðx
n

i � gÞ�
0
ðhiÞii ð73Þ

The limit case b!1 (Heaviside transfer function)

In the limit b!1, the transfer function converges to the Heaviside step function ϕ(h) = rmax

Θ(h − h0) which leads to some simplifications in the explicit writing of the mean-field system

Eq (43). First of all, we can rewrite �
2
ðhÞ ¼ r2

maxYðh � h0Þ and ϕ0(h) = rmax δ(h − h0), where

δ(x) is the Dirac delta function. In the dimension-less notation, we would then write

�ðhÞ ¼ Yðh � ĥ0Þ, �
2
ðhÞ ¼ Yðh � ĥ0Þ and �

0
ðhÞ ¼ dðh � ĥ0Þ, where δ(x) We can re-write

Eq (43) as as follows:

X

x1¼0;1

X

x2¼0;1

Px1x2

Z
dz
ffiffiffiffiffiffi
2p
p e

�

z2

2Yðĥx1x2ðm1;m2; zÞ � ĥ0Þ
ð74Þ

t̂
dm1

dt
¼ � m1 þ

X

x1¼0;1

X

x2¼0;1

x1 � g

gð1 � gÞ
Px1x2

Z
dz
ffiffiffiffiffiffi
2p
p e

�

z2

2Yðĥx1x2ðm1;m2; zÞ � ĥ0Þ
ð75aÞ

t̂
dm2

dt
¼ � m2 þ

X

x1¼0;1

X

x2¼0;1

x2 � g

gð1 � gÞ
Px1x2

Z
dz
ffiffiffiffiffiffi
2p
p e

�

z2

2Yðĥx1x2ðm1;m2; zÞ � ĥ0Þ
ð75bÞ

q ¼
X

x1¼0;1

X

x2¼0;1

Px1x2

Z
dz
ffiffiffiffiffiffi
2p
p e

�

z2

2 dðĥx1x2ðm1;m2; zÞ � ĥ0Þ ð75cÞ

p ¼
X

x1¼0;1

X

x2¼0;1

Px1x2

Z
dz
ffiffiffiffiffiffi
2p
p e

�

z2

2Yðĥx1x2ðm1;m2; zÞ � ĥ0Þ
ð75dÞ

Rðm1;m2Þ ¼
p

ð1 � qÞ2
; ð75eÞ
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where

ĥiðm1;m2Þ ¼ ðx
1

i � gÞm
1 þ ðx

2

i � gÞm
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRðm1;m2Þ

p
Zi þ Ix1

i ;x
2
i
ðtÞ: ð76Þ

In the next passage the erfc function come at hands. Erfc is defined as erfc(x) = 1 − erf(x),

where erf is the error function and we use the following identity, which follows directly from

the definition:

Z 1

c

e� x2

2

ffiffiffiffiffiffi
2p
p dx ¼

1

2
erfc

c
ffiffiffi
2
p

� �

: ð77Þ

The identity in Eq (77) allows to rewrite the system Eq (75) as:

t
dm1

dt
¼ � m1 þ

1

2gð1 � gÞ

X

x1

X

x2

Px1 ;x2 x
1

i � g
� �

erfc
h0 � ĥiffiffiffiffiffiffiffiffi

2aR
p

 !

ð78aÞ

t
dm2

dt
¼ � m2 þ

1

2gð1 � gÞ

X

x1

X

x2

Px1 ;x2 x
2

i � g
� �

erfc
h0 � ĥiffiffiffiffiffiffiffiffi

2aR
p

 !

ð78bÞ

q ¼
X

x1

X

x2

Px1;x2

1
ffiffiffiffiffiffi
2p
p e�

ðĥ iÞ
2
ffiffiffiffi
2aR
p

ð78cÞ

p ¼
1

2

X

x1

X

x2

Px1 ;x2erfc
h0 � ĥiffiffiffiffiffiffiffiffi

2aR
p

 !

ð78dÞ

R ¼
p

ð1 � qÞ2
: ð78eÞ

It is important to make a remark on the units of the system: if we do not use the unit-less

notation, then the variable q is proportional to rmax and the variable p is proportional to r2
max.

If we consider the case where neural self-interaction is excluded, an extra correction term

should be added to the input h(x1, x2, z)) and its limit for b!1 reads as follows:

A2qa�ðhÞ
ð1 � AqÞ

!
b!1

Aarmax

2
: ð79Þ

In the dimensionless notation, the correction term is reduced to a constant a
2

and we can

write explicitly the input term ĥx1x2ðm1;m2; zÞ, when self interaction is excluded:

ĥx1x2ðm1;m2; zÞ ¼ x1 � gð Þm1 þ x2 � gð Þm2 þ
a

2
þ

ffiffiffiffiffi
ar
p

z þ Ix1 ;x2ðtÞ; ð80Þ

Finally, in order to derive the critical correlation let us consider the retrieving state of pat-

tern 1 (that of pattern 2 is symmetric with respect to the m1 − m2 axis in absence of external

input): in this state, m1 = 1, and m2 depends on the correlation C, as it emerges from Fig 9A,

however what is the exact value? It can be computed analytically in the limit, b!1 and γ!
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0. We rewrite the equation for m2 in Eq 45 as:

t̂
dm2

dt
¼ � m2 þ

�
1

g
P11ð1 � gÞ�̂ ð1 � gÞðm

1 þm2Þ þ I1 þ I2½ ��

1

1 � g
P10g�̂ � gm

1 þ ð1 � gÞm2 þ I1½ �þ

1

g
P01ð1 � gÞ�̂ ð1 � gÞm

1 � gm2 þ I2½ � �
1

1 � g
P00�̂ � g m1 þm2ð Þ½ �

�

:

ð81Þ

Next we need to write the probabilities Px1 ;x2 as a function of γ:

P11 ¼ g
2 þ gð1 � gÞC ð82aÞ

P10 ¼ P01 ¼ Pðx2 ¼ 0jx1 ¼ 1ÞPðx1 ¼ 1Þ ¼ gð1 � gÞ � Cgð1 � gÞ ð82bÞ

P00 ¼ 1 � P11 � P10 � P01 � P00 ¼ ð1 � gÞ
2
þ gð1 � gÞC: ð82cÞ

Then, in the limit γ! 0, we have

t̂
dm2

dt
¼ � m2 þ C�̂ m1 þm2 þ I1 þ I2½ � þ ð1 � CÞ�̂ m2 þ I2½ � � �̂ 0½ �

n o
: ð83Þ

Using the limit b!1, in the assumption that we are recalling the first concept, m1 = 1,

there is not any external input, we obtain

m2 ¼ CYð1þm2 � ĥ0Þ þ ð1 � CÞYðm2 � ĥ0Þ � Yð� ĥ0Þ: ð84Þ

Since ĥ0 < 1 and m2� 0, the term Yð1þm2 � ĥ0Þ ¼ 1. On the other hand, Yð� ĥ0Þ ¼ 0.

Therefore, m2 = C if m2 < ĥ0 (cf. the bifurcation diagram in Fig 9C). In the limit case where

m2 ! ĥ0 we obtain Eq (4):

Cmax � Cmax � ĥ0 ¼
h0

Armax
: ð85Þ

How does a network embed groups of overlapping memories? Different

algorithms to generate correlated patterns

In this section we describe how a single subgroup of K patterns with sparseness γ is created

according to three different algorithms. Patterns belonging to the same subgroup correspond

to associated concepts and share pair-wise a fraction of neurons c. For the hierarchical genera-

tive model and the indicator neuron model, we associate the algorithm to the theoretical prob-

ability distribution for a neuron to respond exactly to k concepts out of K.

Hierarchical generative model. We start by creating a “parent” pattern which is not part

of the subgroup. The parent pattern has sparseness λ = γ/c: prob ðx
parent
i ¼ 1Þ ¼ l. We proceed

to create the actual patterns by copying the ones of the parent pattern with probability c, while

the zeros stay untouched, following the conditional probabilities

probðxmi ¼ 1jx
parent
i ¼ 1Þ ¼ c; ð86aÞ

probðxmi ¼ 1jx
parent
i ¼ 0Þ ¼ 1 � c; ð86bÞ
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probðxmi ¼ 1jx
parent
i ¼ 0Þ ¼ 0; ð86cÞ

probðxmi ¼ 0jx
parent
i ¼ 0Þ ¼ 1: ð86dÞ

This ensures that the patterns x
m

i have the right sparseness and fraction of pair-wise shared

neurons. The sparseness can be checked as follows:

probðxmi ¼ 1Þ ¼ lc ¼ g; ð87aÞ

probðxmi ¼ 0Þ ¼ lð1 � cÞ þ ð1 � lÞ ¼ 1 � g: ð87bÞ

On the other hand, the fraction of pair-wise shared neurons is given by the conditional

probability that a neuron is part of pattern ν given that is it part of pattern μ:

probðxni ¼ 1jx
m

i ¼ 1Þ ¼ cþ ð1 � cÞdmn: ð88Þ

Hence the fraction of shared neurons as it should be. More generically, the theoretical prob-

ability (or the expectation) that a neuron participates in k patterns out of K is

PKðkÞ ¼
K!

ðK � kÞ!k!
lckð1 � cÞK� k

þ ð1 � lÞdk0: ð89Þ

Indicator neuron model. To create a subgroup of pair-wise associated patterns using

indicator neurons (i.e. neurons that indicate the subgroup), we proceed in three steps:

1. generate with probability λ a small subset of indicator neurons for this subgroup. This sub-

set gives a parent pattern of indicator neurons:

probðxparenti ¼ 1Þ ¼ lind ¼
cg � g2

ð1 � �Þ
2
� 2gð1 � �Þ þ cg

: ð90Þ

In a network of N neurons, nind = λind N are indicator neurons.

2. To create each pattern μ of the subgroup, copy indicator neurons with probability (1 − �):

probðxmi ¼ þ1jx
parent
i ¼ 1Þ ¼ 1 � � ð91Þ

3. Add random neurons (with probability O) to pattern μ

probðxmi ¼ 1jx
parent
i ¼ 0Þ ¼ O ¼

g � lindð1 � �Þ

1 � lind
: ð92Þ

This last probability can also be interpreted as the probability of flipping a 0 from the parent

pattern when creating the correlated patterns.

With this construction, the total number of neurons that are active in pattern μ is

lindNð1 � �Þ þ ð1 � lindÞN
g� lindð1� �Þ

1� lind
¼ Ng as it should be. The value of λind is chosen in order

to ensure that the fraction of pair-wise shared neurons is c. Indeed we found it by solving cγ =

λ(1 − �)2 + (1 − λ)O.

In this work, we always choose � such that � = O, For specific case � = O, it is possible to

derive � directly from the correlation C and the sparsity γ.
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We create a “parent” pattern~x0 with mean activity hx
0

i ii ¼ l. Starting from~x0 we create~x1

and~x2, each unit i has probability � of being the equal to x
0

i and probability 1 − � of being flipped

compared to x
0

i . All other patterns ξμ, μ = 3, . . ., P are sorted independently from a Bernoulli dis-

tribution with probability Pðxmi ¼ 1Þ ¼ g. The joint probabilities Pkl ¼ Pðx1

i ¼ k; x2

i ¼ lÞ can be

computed as functions of the probabilities λ and �:

P11 ¼ l�2 þ ð1 � lÞð1 � �Þ
2
; ð93aÞ

P10 ¼ P01 ¼ l�ð1 � �Þ þ ð1 � lÞ�ð1 � �Þ ¼ �ð1 � �Þ; ð93bÞ

P00 ¼ lð1 � �Þ
2
þ ð1 � lÞ�2: ð93cÞ

Note that by this procedure we only obtain non-negative correlations C 2 [0, 1].

Using P11 from Eq (93), we can express C as

Cðl; �Þ ¼
P11 � g

2

gð1 � gÞ
¼
ð1 � lÞ½l�2 þ ð1 � �Þ

2
�

gð1 � gÞ
: ð94Þ

Similarly, the mean activity of the correlated patterns can be expressed as a function of λ
and � as

gðl; �Þ ¼ hx
1

i ii ¼ hx
2

i ii ¼ l�þ ð1 � lÞð1 � �Þ: ð95Þ

So far, we showed how to generate correlated patterns given the probabilities λ and �. Con-

versely, how do we choose λ and � given the mean activity γ and the correlation C, C� 0? To

this end, we invert the above relations in order to solve for λ(C, γ) and �(C, γ):

l ¼
gþ � � 1

2� � 1
; ð96aÞ

2�3 � 3�2 þ ½1þ 2gð1 � gÞð1 � ĈÞ�� � gð1 � gÞð1 � ĈÞ ¼ 0; ð96bÞ

Eq (96b) has up to three solutions, we chose those that are real and in the range [0, 1].

The same procedure can be generalized to generate several correlate binary patterns. The

general formula for the joint probability can be written as follows:

Px1 ;...;xn ¼ l�að1 � �Þ
b
þ ð1 � lÞ�bð1 � �Þ

a
; ð97Þ

where a ¼
Pn

m¼1
xm is the number of xμ variables taking value 1 and b = n − a is the number of

xμ variables taking value 0. The value of the joint probabilities in Eq (97) is invariant under per-

mutation of the xμ.

Iterative overlap-generating model. In this subgroup construction, we do not define any

parent pattern. We define the number of active neurons as γN and the number of pair-wise

shared neurons as γcN.

1) We define the set of “untouched neurons”, which counts all neurons at the beginning of the

procedure

2) To create pattern 1 we randomly sample γN neurons and exclude the sampled neurons

from the untouched ones.

We follow the iterative steps, from 3) to 5), to create patterns 2 to p.
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3) For every pattern ξμ with μ from 2 to K, compare it with each of the already created patterns.

Let’s suppose we are comparing the new pattern μ with the already formed pattern ν. a)

check how many neurons are in common between the two. b) sample from pattern ν the

remaining neurons needed to reach γcN shared neurons.

4) Complete pattern μ by adding neurons from the untouched ones until reaching γN active

units.

5) Remove the units used in point 4 from the untouched ones.

It is important to underline the necessity of point 3a). To illustrate this point, let us consider

the case we are building a subgroup of 3 patterns. We build the first one as in point 2. When

we build pattern two starting from scratch, it does not share any neuron with pattern 1, so we

just sample γcN from pattern 1 and γN(1 − c) from the untouched neurons. Now we move to

pattern 3. As before, it does not share neurons from pattern 2, so we pick γcN from it. Now we

compare pattern 3 with pattern 1: it can be that between the neurons we picked from pattern 2

some belong to pattern 1 as well, that’s why we need to adjust the number of neurons to pick

in order to preserve the correct amount of pair-wise correlation.

When the subgroup size K is big however it is still possible to exceed the correct fraction of

shared neurons between some of the patterns that are built last. Let’s suppose we are creating a

subgroup of size K = 16, I start by applying point 3 of the algorithm between pattern 16 and 15,

then pattern 16 and 14 and so on. It can be that when we get to the point of picking neurons

from pattern 4, 3, 2, 1 we take some neurons that also belong to pattern 15 but they are not the

ones we picked in the previous iteration and thus get accepted. This creates a higher correla-

tion between the last built patterns in large subgroups. We checked that this does not influence

significantly the average pairwise correlation during the virtual experiments described in the

next section.

Comparing algorithm predictions with experimental data

The experimental dataset of Fig 6 comes from a previous publication [6]. Data were collected

in 100 recording sessions with epileptic patients implanted with chronic depth electrodes in

the MTL for the monitoring of epileptic seizures. Micro-wires recorded the localized neural

activity; spike detection and sorting allowed to identify the activity of 4066 single neurons.

During recordings, patients were shown different pictures of known people and places

repeated several times. For each neuron, the stimuli eliciting a response were identified using a

statistical criterion based on the modulations of firing rate during stimulus presentation com-

pared to baseline epochs. For additional details on the dataset and data processing we refer to

the original publication. The association between each pair of stimuli was estimated using a

web-based association score.

In order to compare the predictions of the algorithms with the data, we try to reproduce the

real data by running virtual experiments based on the three algorithms presented in the previ-

ous section. In each virtual experiment we replicate the conditions of the real experiment as

follows. For each real experimental session, we first extract the number of responsive neurons

in each session. We then group the presented stimuli into clusters based on an association

matrix derived from the web-association scores. To do so, we use an hierarchical agglomerat-

ing clustering algorithm with threshold equal to the mean of the association matrix for the ses-

sion. Such clusters indicate the amount and the size of the patterns subgroups we have to build

for the corresponding virtual experiment.

We can then proceed with the virtual experiment: in each session we a) build subgroups of

patterns in the same number and size as the clusters of stimuli for each of the three algorithms
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and then b) sample a neuron at the time and count to how many patterns does it respond to. c)

Finally, the count of how many stimuli a neuron responds to that of other sessions. We sample

neurons until we match the number of responsive neurons with that of the real experimental

session. Each virtual experiment counts N = 105 neurons and it is run 40 times and plot in Fig

6C the normalised mean and standard deviation.

We choose to ignore non-responding neurons in our analysis, since it is likely that the pro-

portion of non-responsive neurons compared to that of responsive ones is largely underesti-

mated in the experiment (non-responsive neurons are more likely to remain silent during the

experiment and not to be recorded at all).

Comparing virtual experiments and expected distributions

It is also possible to compare the virtual experiments with the theoretical distributions in Eqs

(89) and (97). Eqs (89) and (97) provide the probability that a neuron is selective to k out of K
patterns if a single subgroup of stimuli is stored in the network. But how do we combine such

probabilities when several subgroups of patterns are stored in the network? We define Cs(k)

the probability that a neuron responds to exactly k patterns in session s. We know from the

previous session the number and sizes Gj of subgroups present in each session. Then

CsðkÞ ¼
XmaxK

j¼k

GjP
jðkÞzj ð98Þ

where maxK is the biggest between all subgroup sizes Kj and zj = 1 − Pj(0) is the probability

that a neuron takes part into the subgroup j. The formula Eq 98 is valid in the assumption that

subgroups are strictly disjoint, meaning that we assume that the same can not take part into

encoding patterns belonging to different subgroups. This assumption is not true for the way

we algorithmically build subgroups patterns in the virtual experiments, however dropping it

make the expression forCs(k) not treatable. Finally the probabilities Cs(k) from each session

must be combined into the final distribution Cfinal(k):

CfinalðkÞ ¼
P

sN
sample
s CsðkÞ

P
s

P
kN

sample
s CsðkÞ

¼
Nsample

1 C1ðkÞ þ Nsample
2 C2ðkÞ þ :::

Nsample
tot

ð99Þ

where Nsample
s is the amount of responsive neurons measured in each experimental session

and Ntot is the total amount of measured responsive neurons. In the last passage, note that
P

s

P
kN

sample
s CsðkÞ ¼

P
sN

sample
s

P
kCsðkÞ ¼ Ntot, since ∑kCs(k) in every session s. The compar-

ison between the theoretical distributions, the virtual experiments and the experimental data

is shown in S6 Fig. The virtual experiments are the same a in Fig 6: we re-run the experiment

40 times and took the average (main points) and standard deviation (error bars). The small

mismatch between the theoretical predictions and virtual experiments is due to the fact that in

the theoretical prediction we do not allow the same neurons to take part to two or more sub-

groups of concepts, while there is no such a restriction in the virtual experiment. Theory pre-

diction and mean of the virtual experiments are really close, proving that only very few

neurons take part in encoding different subgroups.

Heterogeneous frequency-current curves

The frequency-current function of model neurons is neuron-specific and re-written as

�iðxÞ ¼
ðrmaxÞi � ðrminÞi

1þ e� b̂ðx� ðĥ0ÞiÞ
þ ðrminÞi; ð100Þ
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where the values of (rmin)i and (rmax)i are randomly sampled for each neuron from a Gaussian

distribution with mean and standard deviation μmin, σmin and μmax, σmax respectively. The

parameter ðĥ0Þi is then defined as ðĥ0Þi ¼ h0ððrmaxÞi � ðrminÞiÞ=ðAm
2
maxÞ, where h0 is a global

constant. Finally in the firing rate equation, we re-scale the firing rates as follows:

ri ! Max 0;
ri � ðrminÞi
ðrmaxÞi � ðrminÞi

� �

mmax: ð101Þ

In Fig 7 we choose the parameters μmin = 0 Hz, μmax = 1 = 40 Hz, and σmin = σmax = 4 Hz.

Diluted weight matrix

We define an attractor neural network of N units, where each unit receives input from K oth-

ers. The probability of having a connection between two units is d = M/N. The load of the net-

work is defined as α = P/N, where P is the total number of patterns. We also assume that A/d =

constant (to be introduced into the dimensional analysis). The input term Eq 7 is filtered with

transfer function ϕ, which is chosen to be a sigmoid as in Eq 9. The connection matrix, wij,

contains the synaptic weights between neurons i and j, but, compared to Eq 5, connections are

diluted with probability d as defined in [24]

wij ¼
A

Ngð1 � gÞ
dij

d

XP

m

x
m

i � g
� �

x
m

j � g
� �

ð102Þ

where dij is 1 with probability M/N and 0 otherwise and the constant A can be interpret as

“connection strength”. In order for the weights to have expectation hwiji = 0, we subtract the

mean activity of patterns < x
m

i >¼ g. Using the similarity measure introduced in Eq 2, the

input terms hj can also be re-written as a function of the overlaps m1, . . ., mP, by using the defi-

nition of the weights wij, Eq (102), and that of the overlaps.

hi ¼
XN

j

wijrj ¼
A

Ndgð1 � gÞ

XN

j

dij

XP

m

x
m

i � g
� �

x
m

j � g
� �

rj ¼

¼
A

Ndgð1 � gÞ

XN

j

dij x
1

i � g
� �

rj þ
A

Ndgð1 � gÞ

XN

j

dij

XP

m¼2

x
m

j � g
� �

x
m

i � g
� �

rj

ð103Þ

where we have separate the “signal” related to the first pattern being retrieved and a noise term

Yi. We write hi = Am1 + Yi, with

Yi ¼
A

Ndgð1 � gÞ

XN

j

ð1 � dijÞ x
1

i � g
� �

rj þ
A

Ndgð1 � gÞ

XN

j

dij

XP

m¼2

x
m

j � g
� �

x
m

i � g
� �

rj ð104Þ

Since the terms dij and ðx
1

i � gÞ are independent, we have hYii.

We assume Yi to be distributed like a Gaussian with variance

hhs2iii ¼ hhðYiÞ
2
iii

¼
1

N

XN

i

A2

N2d2g2ð1 � gÞ
2

XP

m6¼1

XP

n6¼1

x
m

i � g
� �

x
n

i � g
� �X

j

X

k

x
m

j � g
� �

x
n

k � g
� �

* +

dijdikrjrk

¼
1

N

XN

i

A2

N2d2g2ð1 � gÞ
2

XP

m6¼1

ðx
m

i � gÞ
2
X

j

dijðx
m

j � gÞ
2r2

j

ð105Þ
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in the last passage, we used the fact that hðx
m

j � gÞðx
n

k � gÞi ¼ djkgð1 � gÞ and d2
ij ¼ dij. We

then apply the same independence argument as used for the signal term and obtain

hs2i ¼
A2r2

max

d2
gð1 � gÞd

X

m

ðmmÞ
2

ð106Þ

From now on the passages are the same as in the SI, except maybe the correction term for

excluding self-interaction, which I should recompute.

The final difference in the equations is that the term
ffiffiffiffiffiffi
a0r
p

z, where α0 = P/N should be

substituted with
ffiffiffiffiffiffiffi
adr
p

z. The two terms however are equivalent since α0 = αd.

Numerical solutions

The code used to generate the results of this work can be downloaded from: https://github.

com/ChiaraGastaldi/pub_Gastaldi_2021_AttractorNetwork.git.

Two correlated patterns: Finding the fixed points. The system in Eq (43) is solved

numerically to obtain the fixed nullclines, points, and flux arrows, plotted in Fig 9. Fixed points

are obtain through a grid search in the three-dimensional space spanned by m1, m2 and R. For

each value of Rval 2 [0, max(R)] and m1
val;m

2
val 2 ½Lower bound;Upper bound�, Eqs (44d)–

(44g) are solved. We call the value of R obtained by Eq (44d) Rreconstructed. If Rval and Rrecon-

structed are close enough, namely

jRval � Rreconstructedj < correction � constant � step: ð107Þ

The quantity called “step” is the step size of the linear space we used to span R,

step ¼
maxðRÞ

Resolution
ð108Þ

The correction constant can increase or decrease the range in which we accept a value Rval

as a valid solution: it is equal to 1 in most cases, but can be chose to be a bit bigger than one to

avoid counting the same fixed point too many times. The values of Rval that satisfy Eq (107) are

then used to solve Eq (44), providing the values m1
reconstructed and m2

reconstructed. Analogously to

before, we find the solutions of Eq (44) comparing the values m1
val and m2

val with the recom-

puted counterparts m1
reconstructed and m2

reconstructed as follows

jmm

val � mm

reconstructedj < correction � constant � step; ð109Þ

where the step is defined as

step ¼
jUpper bound � Lower bound j

Resolution
: ð110Þ

List of parameters. Figs 1C, 9A and 5 and S3 Fig) resolution = 1000, correction-con-

stant = 1, size = 1000, max(R) = 0.3, lower bound = -0.2, upper bound = 1.2. S1 Fig) resolu-

tion = 1000, correction-constant = 1, size = 1000, max(R) = 0.3, lower bound = -0.05, upper

bound = 1.05. Fig 2A and 2B) resolution = 100, correction-constant = 1.1, size = 50, max(R) =

0.3, lower bound = -0.05, upper bound = 1.05. S2 Fig) resolution = 500, correction-constant = 1,

size = 500, max(R) = 0.3, lower bound = -0.2, upper bound = 1.2. S5 Fig) resolution = 500, cor-

rection-constant = 1, size = 200, max(R) = 0, lower bound = -0.2, upper bound = 1.2.

Two correlated patterns with adaptation and periodic inhibition. In order to solve the

dynamical equations of the mean-field in the presence of adaptation and global inhibition (as
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done in S3 and S4 Figs) we compute at each point in time ��x1x2 ðm1;m1;Yx1x2Þ, p, q, R and J0(t).
In particular, the four ��x1x2 ðm1;m1;Yx1x2Þ are solved first and recursively since they are func-

tions of themselves. We then update Yx1 ;x2ðtÞ with Euler method. Finally, we compute m1(t),
m2(t). In order to compute m1(t), m2(t), we make a time-scale separation argument. We

assume that m1(t) and m2(t) dynamics are much faster than Yx1 ;x2ðtÞ and J0(t), t� TJ0
< Ty.

According to this approximation, at each point in time we let m1(t) and m2(t) reach their equi-

librium values given the current Yx1 ;x2ðtÞ and J0(t). In other words, at each point in time, we

consider all dynamical quantities frozen, than let m1(t) and m2(t) evolve according to their

dynamics (we use Euler method) until convergence, and finally update the other quantities.

To find the fixed points in S3 Fig, we proceed like in the non-adaptive case: we do a grid

search in the space spanned by m1, m2 and R. For each solution of R, ��x1x2 ðm1;m1;Yx1x2Þ are

computed recursively. Finally, for the obtained values of R and ��x1x2 ðm1;m1;Yx1x2Þ, the solu-

tions of m1 and m2 are found.

Excluding self-interaction: A numerical approximation. In Fig 2B, we compute the crit-

ical correlation for non-zero network load, α> 0, in the case we consider the correction to

exclude self interaction. To find the numerical solutions of the fixed points, we have approxi-

mated the input term h(x1, x2, z) to the first order in z as follows:

hðx1; x2; zÞ ¼ hhðx1; x2; zÞiz þ A
ffiffiffiffiffi
ar
p

z: ð111Þ

Then the quantity

hhðx1; x2; zÞiz ¼ Armax x1 � gð Þm1 þ Armax x2 � gð Þm2 þ
A2qa�ðhðx1; x2; zÞÞ
ð1 � AqÞ

� �

z
ð112Þ

can be approximated by

hhðx1; x2; zÞiz � Armax x1 � gð Þm1 þ Armax x2 � gð Þm2 þ
A2qa�ðhhðx1; x2; zÞizÞ

ð1 � AqÞ
ð113Þ

which is equivalent to take the order 0 term into the Taylor expansion of h(x1, x2, z) for small z.

Stability of the fixed points. The stability of the fixed points in Figs 9, S5 and S2 is

obtained by computing the Jacobian matrix of the differential equations for m1 and m2 from

Eqs (43a) and (43b) respectively. Analogously, the stability of the fixed points in S2 and S3 Figs

are obtained by computing the Jacobian matrix of the differential equations for m1 and m2

from Eq (68ca-b).

When the steepness of the transfer function is very high, b> 1000, we approximate the

transfer function with an Heaviside. The system Eq (43) as well as the Jacobian matrix are

rewritten in a simpler way for b!1 as can be found in Eq (78).

In the numerical computation of the Jacobian matrix computed in Section “Stability of the

fixed points”, we exploited the symmetries under exchange of m1 and m2, for example J22(m1,

m2) = J11(m2, m1) and so on.

Supporting information

S1 Text. Supplementary text for “When shared concept cells support associations: Theory

of overlapping memory engrams”.

(PDF)

S1 Fig. Evolution of m1(t) and m2(t) according to the mean-field dynamics for super-

critical correlation. The system is initialized in the rest state. During the stimulation period

(0.5–8s) m1(t) receives external input. A) The system state is plotted in the phase-plane before,
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during and after stimulation respectively. B) The delay between the activation of m1(t) and

m2(t) is highlighted. Parameters: γ = 0.002, b̂ ¼ 100, ĥ0 ¼ 0:25, rmax = 1, t̂ ¼ t ¼ 1rmax, α = 0,

C = 0.2.

(TIF)

S2 Fig. Estimation of the correlation range in which retrieval of a chain of concepts is pos-

sible. A) Estimation of the maximum correlation, which correspond to the loss of the two sin-

gle retrieval states, when J0 is lowest. B) Estimation of the minimum correlation, which

corresponds to the creation of the stable fixed point at m1 = m2 > 0, when the inhibition J0 is

at its maximum. In both A and B adaptation is frozen and θ = 0. Parameters: γ = 0.002, α = 0,

b̂ ¼ 50, ĥ0 ¼ 0, minðĴ 0Þ ¼ 0:7, minðĴ 0Þ ¼ 1:2.

(TIF)

S3 Fig. A) Dynamical mean-field solutions for m1 and m2 in the case of two independent pat-

terns. B) Phase planes corresponding to the minimum (J0 = 0.7) and maximum (J0 = 1.2) value

of inhibition in the case of two independent patterns. C,D) Same as A and B, but for correlated

patterns C = 0.2. Parameters in A—D: γ = 0.1, α = 0, b = 100. E, F) Same as C and D but in the

low activity regime and for independent patterns. G, H) Same as C and D but in the low activ-

ity regime. Parameters in E—H: γ = 0.002, α = 0, b = 100, τθ = 45, T = 0.015, TJ0
¼ 25. For the

dynamics: resolution = 200, factor = 1. For the phase-planes: resolution = 1000, factor = 1,

upper bound = 1.2, lower bound = -0.2 (same as Figs 2 and 4).

(TIF)

S4 Fig. Retrieval dynamics in the presence of adaptation according to the mean-field equa-

tions (dashed lines), and comparison with Fig 4A (shaded solid lines) A) Only two patterns are

correlated. B) Four patterns are correlated. Parameters: N = 104, P = 16 in full network simula-

tions and α = 0 in mean-field. γ = 0.002, τθ = 45, T = 0.015, TJ0
¼ 25 in both.

(TIF)

S5 Fig. Equivalent of Fig 9 but with the parameters extracted from [24]. In A and B the

transfer function parameters are taken as those of function ϕ in [24]: A = 3.55, rmax = 76.2,

b = 0.82, h0 = 2.46. On the other hand, in C and D I estimated the parameters of a Sigmoid

function that fits the function f(ϕ) in [24] as follows: A = 3.55, rmax = 0.83, b = 4.35, h0 = 1.7. In

all plots γ = 0.001. A and C) The phase-plane for c = 0 shows the position of fixed points. B and

D) Bifurcation diagram and critical fraction of shared neurons according to different parame-

ter choices.

(TIF)

S6 Fig. Comparison between model prediction and data. Probability of finding a neuron

responding to a given number of concepts as measured from experimental data (black stars),

predicted by the three algorithms (as in Fig 6, the area between error bar of one standard devi-

ation is shaded) and theoretically forecast for the indicator neuron model (light blue) and for

the hierarchical generative model (light green) obtained from Eq (99). The theoretical predic-

tions are not smooth curves due to choice of matching the subgroups sizes to the dataset.

(TIF)
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