Table of Content
Graphen, Ordnungen und Geometrie (Diskrete Strukturen III)
Sommersemester 2024
Stefan Felsner
1 ,
2 ,
3 ,
4 ,
5 ,
6 ,
7 ,
8 ,
9 ,
10 ,
11 ,
12 ,
13 ,
14 ,
15 ,
16 ,
17 ,
18 ,
19 ,
20 ,
21 ,
22 ,
23 ,
24 ,
25 ,
26 ,
26 ,
1. Vorlesung, 16.04.2024
Intersection graphs
interval graphs
α=Θ (greedy left to right independent set)
χ=ω (greedy left to right coloring)
unit squares Θ≤2α and χ≤2ω
squares -- intersection graph is 4(ω-1) degenerate
Θ≤4α and χ≤4ω-3
2. Vorlesung, 18.04.2024
rectangle intersection graphs
the Asplund-Grünbaum bound: χ≤4ω²-3ω
intersection graphs of pseudodiscs
the union complexity
the coloring bound: χ≤19ω
3. Vorlesung, 23.04.2024
triangle-free graphs with large chromatic number
classical constructions
bounds on χ in terms of number of vertices
segment intersection graphs
the construction of Pawlik et al.
χ-boundedness
examples and questions
circle graphs
4. Vorlesung, 25.04.2024
Coloring circle graphs
Basics: circle and overlap graphs
permutation graphs
James Davies: Improved bounds for colouring circle graphs
arxiv.org/pdf/2107.03585.pdf
coloring on the basis of pillars
5. Vorlesung, 30.04.2024
adding pillars to an arc
binary tree order
subdivided arc and color intervals - a poset
Approximation algorithms for α
segments stabbed by a line
6. Vorlesung, 02.05.2024
a sqrt(α) approximation by dynamic progr.
general segments
divide and conquer with the median line
levels in the recursion tree
rectangles
the crossing graph G
7. Vorlesung, 07.05.2024
computing a max indep set S in G
computing a 2-maximal indep set I in S
comparing |I| with a maximum indep set J
Geometric representations of planar graphs
Drawings
Force directed embeddings
the energy of an embedding
energy is strongly convex
8. Vorlesung, 14.05.2024
energy minimization as a linear system
digression: discrete analytic functions
each vertex in strict convex hull of neighbours
anglesums allow no surplus
the embedding is planar
9. Vorlesung, 16.05.2024
Circle packing (kissing coins representation)
radii imply angles
iteration with increasing radii
non-divergence
the embedding
primal-dual circle packings
10. Vorlesung, 21.05.2024
Planar separator theorem (application of circle packing)
lifting circles to the sphere
centerpoints
areas of cups and belts
a random plane through 0 is expected to hit few circles
Max weighted matchings via separators
augmenting paths
a divide and conquer algorithm
11. Vorlesung, 23.05.2024
Triangle contact representations
Schnyder woods
A simple layout algorithm
Homothetic triangles
the problem with separating triangles
stacked triangulations
Bijection Schnyder woods - 3-orientations
12. Vorlesung, 28.05.2024
The lattice of α-orientations
Existence of α-orientations and Hall condition
Rigid edges
flips-flops and facial cycles
potentials
13. Vorlesung, 30.05.2024
Bijection between α-potentials and α-orientations
The lattice of α-potentials
Linear equations for homothetic triangles
The matrix A and a bipartite graph
det(A) as a sum over perfect matchings
Kasteleyn theorem and non-degeneracy
14. Vorlesung, 04.06.2024 (Vertretung: R. Lauff)
negative values and their directed cycles
flipping and iterating
Linear equations for squarings
rectangulations and separating decompositions
15. Vorlesung, 06.06.2024 (Vertretung: R. Lauff)
the matrix, the graph, det and perfect matchings
a single flip suffices for a non-negative solution
Kasteleyn signatures exist for planar bipartite graphs
16. Vorlesung, 11.06.2024
Cartograms
[recommended visit: WorldMapper]
Three equivalence relations for rectangulations
Weak equivalence class is area universal
uniqueness of an area representation
17. Vorlesung, 13.06.2024
existence via inverse mapping
Applications:
Mapping segments of a rectangulation to points
Rectilinear cartograms of triangulations via Schnyder woods
[example: polution Europe]
18. Vorlesung, 18.06.2024
Order Theory
Linear extensions and dimension
linear extensions exist
realizer and dimension
dimension and embeddings - Ore definition
dimension of Boolean lattice
standard examples
19. Vorlesung, 19.06.2024
2-dimensional orders
conjugate order
non-separating linear extension
critical pairs and alternating cycles
dimension and hypergraph coloring
20. Vorlesung, 25.06.2024
Dimension of incidence orders and dimension of graphs
incidence relations and their graphs
comparing the two dimension concepts for graphs
dimension of the complete graph
dimension of polytopes, lower bound [pdf]
21. Vorlesung, 27.06.2024
Dimension of planar maps
splits and their dimension
grid intersection graphs (GIG) and their dimension
the angle graph of a map
setting things together (2-connected maps)
22. Vorlesung, 04.07.2024
Greene-Kleitman Theory
notation and the 5 theorems
sketch of the proof via min-cost-flow
k-antichains and antichains in P x [k]
23. Vorlesung, 09.07.2024
Viennot's approach to Greene-Kleitman theory for 2 dimensional orders
Young Tableaux
Robinson-Schensted correspondence
jump lines and skeleton points
proof of the properties of Young tableaux
24. Vorlesung, 11.07.2024
computing maximum l-antichain of X
using maximum l-antichain of S(X)
computing maximum k-chain of X
using maximum (k-1)-chain of S(X)
25. Vorlesung, 16.07.2024
Two Poset Polytopes
the order polytope
vertices
simplicial partition
volume
the chain polytope
vertices
a map between the polytopes
Stanley's Theorem
26. Vorlesung, 18.07.2024
convex corners and antiblockers
the antiblocker of the chain polytope
is the antichain polytope
liner extensions of 2-dim posets, an ineqiality
Siderenko's inequality
proof via network an flow
Counting linear extensions
hardness and easy cases
Back to
main page.