Table of Contents

Combinatorics

Sommer Term 2021
Stefan Felsner


Content of individual lectures: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 25 , 26 , 27 ,

1. lecture, 13.04.2021
Youtube youtu.be/605TY__RJ_0

   What is Combinatorics - introductory examples
     Derangements
       Aspects of counting derangements (fixed point free permutations) P.R.de Montmort
       sequence A000166 in OEIS
       recurrence - summation - asymptotics - generating function  
2. lecture, 15.04.2021
Youtube youtu.be/ccatPfoFs3w
     Orthogonal Latin Squares 
       (Euler's 36 officers problem)
       Orthogonal Latin squares of odd order from groups
       MOLS (mutually orthogonal Latin squares)
       There are at most n-1 MOLS of order n
       Projective planes
3. lecture, 20.04.2021
Youtube https://youtu.be/oSQQpruHyiA
   Basic Counting
     Basic rules for counting
     Binomial coefficients
        Models and identities
        Extending binomial coefficients 
        Extending binomial identities to polynomial identities
        The binomial theorem
     Combinatorics of Permutations
        The type of a permutation
        Enumeration of permutations of given type
4. lecture, 22.04.2021
Youtube https://youtu.be/-eeEuaPmWLg
The quality of the recording is terrible - I didn't pin speakers view - sorry.
Here are my notes for the lecture [Lecture-4-notes.pdf]
        Permutations with k cycles
        Stirling numbers of first kind
        Recursion and raising factorials
        Expected number of cycles 
   The twelvefold way
      Partitions of a set
        Stirling numbers of second kind
5. lecture, 27.04.2021
Youtube https://youtu.be/tOC7S6_X-D0
        Stirling numbers of 2nd kind
        Stirling inversion 
     Partitions of an integer
        Generating function of partitions
        The Hardy-Ramanujan-Rademacher formula      
        Distinct and odd are equinumerous
6. lecture, 29.04.2021
Youtube https://youtu.be/P4AHGmk0dI4
        Euler's Pentagonal Number Theorem 
   Fibonacci numbers
      Identities
7. lecture, 04.05.2021
Youtube https://youtu.be/bpI_-N4SR_c
   Fibonacci numbers
       Binet's formula via generating function
                      via linear algebra
  Solving linear recurrences
      The general approach (partial fraction decomposition)
      Exponential generating functions (differential equations)		      
8. lecture, 06.05.2021
Youtube https://youtu.be/3YmBlMzgJ3s
  Formal power series
      Basic operations
      Bernoulli numbers and a summation formula
      Composition of FPS
      The symbolic method
      Catalan numbers and their generating function 
9. lecture, 11.05.2021
Youtube https://youtu.be/xHbHwVYGEGA
  q-Enumeration
     Permutations and inversions
     Mac Mahon's maj-index and the equidistribution theorem
     Eulerian numbers 
     Equidistribution of des and exc
10. lecture, 18.05.2021
Youtube https://youtu.be/gdpWrCLmokI
  
       Eulerian numbers 
       Worpitzky's identity
       q-binomial coefficients
       01-words and inversions
       First q-binomial theorem
11. lecture, 20.05.2021
Youtube https://youtu.be/TcVA1s-hQEg
       Subspaces of q-vectorspaces
         A second q-binomial theorem   
   Finite sets and posets
      Intersecting families of subsets
      Posets and lattices
12. lecture, 25.05.2021
Youtube https://youtu.be/lT17x34F3QA
      Sperner's Theorem - LYM inequality
    Erdös-Ko-Rado Theorem - cyclic permutations
       Small maximal k-intersecting families
    Shadows and a second proof of Sperner's
    The Kruskal-Katona Theorem
13. lecture, 27.05.2021
Youtube https://youtu.be/lSvRYZ142kE
    The Lovasz version of Kruskal-Katona
      Erdös-Ko-Rado from LKK
 
14. lecture, 01.06.2021
Youtube https://youtu.be/yT0U_9irJBg
   Symmetric chain decompositions
      Symmetric chain decompositions for multisets
      Symmetric chain decomp. and pairing brackets
      An application to Dedekind's problem
   Orthogonal chain decompositions
      Two orthogonal chain decompositions for Bn
      A probability application of orthogonal chain decompositions
15. lecture, 03.06.2021
Youtube https://youtu.be/JonxG0f4DDM
   Duality theorems
      Dilworth's Theorem       
      König-Egervary matching theorem
        Equivalence with Dilworth's
      Lemma of Erdöos-Szekeres
16. lecture, 08.06.2021
Youtube https://youtu.be/SLlQ_X7wF_A
    Tilings
       Domino tilings - rectangles and almost rectangles
       Tilings with Vs (L-Trominos)
    Necessary conditions
        Crit 1: divisibility
        Crit 2: coloring conditions
             tilings with Ts and sticks
        Crit 3: homology criterion
             free abelian groups and reductions
17. lecture, 10.06.2021
Youtube https://youtu.be/k_EV7YyVjJc
             The homology group of Ls (L-tetrominoes)
             The power of homology arguments
	Aztec diamond A(k) and tilings with Zs (skew-tetrominoes)     
             coloring argument for k = 1,2 mod 4
	     no homology argument for k = 0,3 mod 4
18. lecture, 15.06.2021 >
Youtube https://youtu.be/TuO839LPYKw
       Crit 4: homotopy criterion     
           Proof for the homotopy criterion
           Ex: homotopy can be more powerful than homology
	   Aztec diamond tilings with Zs
               shadow paths and winding numbers
      Counting tilings
      The Aztec tiling theorem
           domino shuffling - sketch of the proof
19. lecture, 17.06.2021
Youtube https://youtu.be/LW_LeZ14XSc
          Schröder numbers and small Schröder numbers
	  Bijection: tilings of A(n) <-> families on n nonintersecting Schröder paths
	  systems on n nonintersecting paths, Schröder and small Schröder
	  Lemma of Lindström, Gessel-Viennot
	  The proof of the  Aztec tiling theorem
    The proof of the Lemma of Lindström, Gessel-Viennot
          Cancellation of intersecting paths systems via involution 
20. lecture, 22.06.2021
Youtube https://youtu.be/L9arUICt1WU
          Cauchy-Binet formula from the LGV Lemma
   Polya Theorie: Counting with symmetries
      Necklaces and colored cubes - two introductory examples
      Permutation groups and the cycle index
21. lecture, 24.06.2021
Youtube https://youtu.be/zwXYZwdkGhM
      The Lemma of Cauchy-Frobenius-Burnside
      Polya's first theorem: counting orbits of RD
      Weights on R and the induced weight on RD
      Polya's fundamental theorem: counting orbits with weights 
22. lecture, 29.06.2021
Youtube https://youtu.be/A_BR6-1GgNc
   Design Theory
     Sλ(t,k,v) designs
     Some examples and constructions 
     Arithmetic conditions
     Fisher's inequality
 
23. lecture, 01.07.2021
Youtube https://youtu.be/xco1fxWSuN4
     Kirkman's problem and a solution
     Steiner triple systems with v = 3 mod 6
     A construction based on the sharp transitivity of
         PGL(2,q) on ordered triples
24. lecture,06.07.2021
Youtube https://youtu.be/6g4CDNM5aYk
Möbius inversion
      Incidence algebra of a poset
      Zeta function and  Möbius function
      Möbius function of chains and products
      Inclusion-Exclusion, an example
25. lecture, 08.07.2021
Youtube https://youtu.be/R1gnMLuuixA
    Counting k-covers
       (An application in 'exact exponential algorithms')
       The Fast-Zeta transform
  Catalan numbers
      5 Catalan families
      Another 5 Catalan families
        some bijections
 
26. lecture, 13.07.2021
Youtube https://youtu.be/BZ8BAUJmkwQ
     More Catalan families
        some bijections
        Determining the numbers
           cycle lemma
           reflection principle
           symmetric chain decompositions
        Narayana numbers via LGV Lemma 
27. lecture, 15.07.2021
Youtube https://youtu.be/Ld5O8CP4ELs
       The Tamari lattice
       Rotation distance of binary trees,
           simplicial decompositions and ideal tetrahedra
       Fiber polytopes and the Associahedron
       The Maule lattice of a cloud
           three examples
 


Back to the course page.