Freie Universität Berlin Fachbereich Mathematik

StR.i.H. Albrecht Gündel-vom Hofe

10. Übungsblatt zur "Analysis I (lehramtsbezogen)"

(Abgabe der Hausaufgaben: 28.01.2014)

42. Aufgabe (Übungsaufgabe):

Man beweise mittels vollständiger Induktion über $n \in \mathbf{N}_0$:

Für jede n-elementige Menge M – d.h. card(M) = n – ist die Anzahl der k-elementigen Teilmengen $A \subseteq M$ für $k \in \mathbf{N}_0$ beliebig gegeben durch $\binom{n}{k}$.

<u>Tipp</u>: Man beachte, dass der Fall k > n mit eingeschlossen ist, und behandle den Fall k = 0 extra. Im Induktionsschritt mache man Gebrauch von der in Aufgabe 40 **H** (b) bewiesene Eigenschaft der Binomialkoeffizienten.

43. Aufgabe (Hausaufgabe):

Zeigen Sie durch vollständige Induktion über $n \in N$:

Die Anzahl an injektiven Abbildungen $f: A \to B$ von einer n-elementigen Menge A in eine m-elementige Menge B mit $m \ge n$ ist gegeben durch $n! \cdot \binom{m}{n}$.

8,0

44. Aufgabe:

Für $n \in \mathbb{N}_0$ beliebig sei das Polynom $f_n(x) = \sum_{k=0}^n a_k x^k$ gegeben durch die folgende Rekursionsvorschrift für die Koeffizienten a_k :

$$\ddot{\mathbf{U}}$$
 (i) $a_0 = 1$, $a_{k+1} = \frac{k+1}{k+2} \cdot a_k$ $(k = 0, 1, ..., n)$,

H (ii)
$$a_0 = 1$$
, $a_{k+1} = \left(1 - \frac{k}{k+2}\right) \cdot a_k$ $(k = 0, 1, ..., n)$.

- a) Bestimmen Sie konkret die Koeffizienten für das Polynom f_5 und ermitteln Sie unter Zuhilfenahme des Hornerschemas die Funktionswerte $f_5(x)$ an den Stellen x=m für m=0,1,2,3,4,5 und skizzieren Sie evtl. unter Zuhilfenahme eines Plotters die Funktion in dem Intervall $\begin{bmatrix} -10,10 \end{bmatrix} \subseteq \mathbf{R}$.
- b) Leiten Sie für die Koeffizienten a_k eine geschlossene Darstellung (Folgenvorschrift) her und beweisen Sie Ihre Vermutung mittels vollständiger Induktion über $k \in \mathbf{N}$.

100	
10.0	

45. Aufgabe (Übungsaufgabe):

- a) Mittels vollständiger Induktion beweise man, dass für das Polynom $f_n(x) = (1+x)^n$ gilt: $f_n(x) = \sum_{k=0}^n \binom{n}{k} \cdot x^k$.
- b) Leiten Sie mithilfe von (a) eine konkrete Formel für den Ausdruck $(a+b)^n$ sowie für $(a-b)^n$ und $n \in \mathbf{N}_0$ her (allgemeine Binomische Formel = Binomischer Lehrsatz).
- c) Bestimmen Sie einmal explizit das Polynom $f(x) = (1 + x^2) \cdot (1 2x)^5$.

46. Aufgabe (Hausaufgabe):

- a) Leiten Sie für das Polynom $f_n(x) = \sum_{k=0}^n x^k = 1 + x + ... + x^n$ ($x \in \mathbb{R}$) eine summenfreie Darstellung her und beweisen Sie diese mittels vollständiger Induktion über $n \in \mathbb{N}_0$. (Es handelt sich um die *geometrische Summenformel*.)
- b) Mithilfe von (a) leite man eine konkrete Formel für den Ausdruck $a^n b^n$ her (allgemeine 3. Binomische Formel).
- c) Zeigen Sie, dass es zu jedem $n \in \mathbb{N}_0$ ein $N \in \mathbb{N}_0$ gibt, so dass gilt: $\prod_{k=0}^{n} \left(1 + x^{2^k}\right) = f_N(x) = \sum_{k=0}^{N} x^k$. Wie groß muss N gewählt werden?
- d) Untersuchen Sie unter Rückgriff auf (a) das allgemeine Polynom $f_n(x) = \sum_{k=0}^n x^k$ sowie im Speziellen das Polynom $p(x) = 1 2x^2 + 4x^4 8x^6 + 16x^8 32x^{10}$ auf reelle Nullstellen.

<u>Tipps zu</u> (a): Man betrachte einmal $(1-x) \cdot f_n(x)$ für $x \neq 0$.

- (c): Beachte Aufgabe 38(b).
- (d): Man untersuche dieFälle *n* gerade und *n* ungerade.

12,0