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ABSTRACT. A Lagrange-Newton-SQP method is analyzed for the optimal
control of the Burgers equation. Distributed controls are given, which are
restricted by pointwise lower and upper bounds. The convergence of the
method is proved in appropriate Banach spaces. This proof is based on a
weak second-order sufficient optimality condition and the theory of Newton
methods for generalized equations in Banach spaces. For the numerical real-
ization a primal-dual active set strategy is applied. Numerical examples are
included.

1. INTRODUCTION

This paper is concerned with the numerical analysis of a sequential quadratic
programming (SQP) method for optimal control problems governed by the Burgers
equation, which is a one-dimensional simple model for convection-diffusion phe-
nomena, such as shock waves, supersonic flow about airfoils, traffic flow, acoustic
transmission etc. Distributed controls are considered, and terminal and distributed
observation is included in the objective functional. We extend the analysis done in
[21] to bilaterally control constraints. Convergence and rate of convergence results
are proved. Let us refer to [20], where the convergence of the augmented Lagrange-
SQP method was shown for the optimal control of the stationary Burgers equation
with unrestricted controls. Including first-order sufficient optimality conditions in
the considerations, we are able to essentially weaken the second-order sufficient
optimality conditions needed to prove the convergence of the method. These suf-
ficient conditions tighten up the gap to the associated necessary ones. We refer
to [17, 18], where convergence results for a SQP method were proved for optimal
control problems governed by semilinear equations.

SQP methods for the optimal control of partial differential equations have been
the subject of many papers. We refer, for instance, to [8, 22] for the optimal
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control of a phase field model, to [11] for a class of semilinear elliptic optimal
control problems and to [10] for time-dependent fluid flow.

Following recent developments for ordinary differential equations, we adopt here
the relation between the SQP method and a generalized Newton method. This
approach makes the whole theory more transparent. We are able to apply known
results on the convergence of generalized Newton methods in Banach spaces assum-
ing the so-called strong regularity at the optimal reference point. In this way the
convergence analysis is shorter, and we are able to concentrate on specific questions
arising from the Burgers equation.

Once the convergence of the Newton method is shown, we have to verify the
strong regularity by sufficient conditions and to show that the Newton steps can
be performed by solving linear-quadratic control problems. This interplay between
the Newton method and the SQP method is a specific feature, which cannot be
derived from general results in Banach spaces, since we have to discuss pointwise
relations.

To compute each SQP step we have to solve a linear-quadratic optimal control
problem. This is done by a primal-dual active set algorithm, which is based on a
generalized Moreau-Yosida approximation of the indicator function of the admissi-
ble controls. The method was developed due to [3] and was extended in [9]. Let
us also mention [12], where the primal-dual active set algorithm was applied to
parabolic optimal control problems.

The paper is organized in the following manner. In section 2 we introduce
the optimal control problem for the Burgers equation and the corresponding SQP
method. The generalized Newton method is established in section 3. The strong
stability of the generalized equation is proved in section 4, while section 5 is devoted
to perform the Newton steps by SQP steps. The primal-dual active set strategy is
introduced in section 6, and numerical examples are presented in the last section.

2. OPTIMAL CONTROL PROBLEM AND SQP METHOD

Define Q = (0,1) C R and, for given T'> 0, Q = (0,7) x Q and ¥ = (0,T) x 99.
We set V = H} (), H = L*(Q) and identify the Hilbert space H with its dual H'.
On H we use the common natural inner product (-, -)m, and endow the Hilbert
space V' with the inner product

(0, 0)y = (¢, ¥ g for @, € V.

Recall that V is continuously embedded into C(Q), see [1] for instance. Moreover,
by L2(0,T; V') we denote the space of measurable abstract functions ¢: [0,T] — V,
which are square integrable, i.e.,

T
/0 @I dt < co.

When ¢ is fixed, the expression ¢(t) stands for the function ¢(¢,-) considered as a
function in Q only.
In this work we make use of the Hilbert spaces

W(0,T) ={p € L*(0,T;V) : ¢ € L*(0,T;V'")}
and

W(0,T) = {p € L*(0,T; H*(Q) NV) : ¢ € L*(0,T; H)}
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supplied with their common inner products, see [4], for instance. Notice that
L?(0,T; H) ~ L*(Q).
The admissible set Uyg C L*°(Q) for the controls is given by

Usd = {u € L*(Q) : uy(t, ) < u(t,z) < up(t,z) a.e. in Q},

where u, and up are given functions of L>®°(Q) satisfying u, < up a.e. in Q.

Let f € L?(Q) be a fixed forcing term and yo € V be a given initial condition.
For controls u € L?(Q) the state y is defined by the weak solution of the Burgers
equation

(213‘) Yt — VYza + Y9 = f + bu in Q:
(2.1b) y = 0 on X,
(2.1c) y(0) = wo in Q.

Here, b € L*°(Q) is a given ”shape function” for the control input, and v > 0
denotes a, viscosity parameter.

Definition 2.1. A function y is called a weak solution to (2.1) if y € W(0,T) and

(yt(t)aﬂo>vf,v +v (yt),0)y + Wy (1) ) m

(2.2a)

= ((f+bu)(t),p)y forallp €V and a.e. t €[0,T]
and
(2.20) (4(0) 05 = (o, X)gy for all x € .

Notice that Q C R ensures V to be continuously embedded into C (), therefore
y(t)yz(t) € H a.e. on [0,T]. The next theorem ensures the existence of a unique
weak solution to the Burgers equation which is even more regular. The proof
follows along the lines of that for the unsteady Navier—Stokes equations, see [15]
for instance. The a-priori estimate (2.3) is proved in the appendix.

Theorem 2.2. For all u, f € L*(Q) and all yo € H there exists a unique weak
solution y € W(0,T) to (2.2) satisfying

(2.3) lllywo,ry < € (1+ llull32))

with a constant C' > 0 only depending on yo, b, f and v. Moreover, if yo € V, then
y € W(0,T) holds.

Remark 2.3. Since W(0,T) is continuously embedded into the space of all con-
tinuous functions from [0, 7] into V', denoted by C([0,T]; V), see [4] for example,

we conclude from Theorem 2.2 that y € C'(Q) holds for yo € V.

Throughout the sections 2—6 we assume that yg € V. From Remark 2.3 we
directly infer the next corollary. For a proof of the estimate we refer to the appendix.

Corollary 2.4. Withu, f € L*(Q) and yo € V holding the unique solution to (2.2)

belongs to C(Q) and satisfies the estimate

Wl + 1Wlo@ < C (112 + luolly + i)

for a constant C > 0.
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Now we proceed by introducing the cost functional
— 1 _ 2 2 1 _ 2
J(y,u) = 5 agly — 20|° + Bolul® dedt + 5 aqly(T) — zq|” dz,
Q Q

where zg € L*(Q) and zq € V are given desired states, and ag,Bg € L*™(Q),
ag € WhH(Q) are non-negative weights such that 8o > 8 a.e. in Q for a constant
B > 0. We also assume b # 0 on a subset Qo C ) with non-zero measure. The
control problem can be written as

(P) min J(y,u) s.t. (y,u) solves (2.2) and u € Uyg-

We refer the reader to [21] where (P) was considered with U,g = L?(Q). The next
theorem guarantees the existence of a solution to (P).

Theorem 2.5. Problem (P) has at least one (globally) optimal solution (y*,u*).

Proof. Let (y,u) € W(0,T) x U,gq satisfy (2.2). Then we infer from (2.3) that y is
bounded in W (0,T). Hence, there exists a { > 0 with

¢=inf{J(y,u) : (y,u) € W(0,T) x Uyq with e(y,u) =0}.

This implies the existence of a minimizing sequence {(y™,u™)}nen in W(0,T) x Usq
such that ¢ = lim,,,o, J(y",u™) and (y™,u") satisfies (2.2) for all n € N. Since
U.q is bounded, we infer that there exists u* € L?(Q) and a subsequence {u™ }ren
in L2(Q) with u™ — u* as k tends to infinity. Moreover, we find from (2.3) that
y™ — y* € W(0,T), possibly after selecting a subsequence again. It was proved in
[21] that the pair (y*,u*) satisfies (2.2). Moreover, the functional J weakly lower
semicontinuous with respect to (y,u). This yields J(y*,u*) = {. Since Us,q is closed
and convex in L%(Q), we get u* € U,q. Hence, u* is optimal. O

Remark 2.6. From yo € V and Corollary 2.4 we infer that y* belongs to W(0,T).

Throughout the paper we make often use of the next proposition, which is proved
in the appendix.

Proposition 2.7. Let ai,az € C([0,T]; H), vo € H, and g € L*(Q). Then

Vg — Ve + a1V +a2v, = g inQ,
(2.4) v = 0 onkX,
v(0) = vy nQ

has a unique solution y € W(0,T) satisfying

ollwory < C (llvolly +llgll2qy ) -

If, in addition, vo € V holds, it follows that y € W(0,T), and the estimate
lollywio,ry < € (Ileolly + gl )

holds.

Due to an embedding argument, see Remark 2.3, we directly derive the following
corollary.
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Corollary 2.8. With the hypotheses of Proposition 2.7, the solution to (2.4) sat-
isfies

lollo) < € (llvolly + llgll 2,
for a constant C > 0.

Problem (P) is a non-convex programming problem so that different local minima,
might occur. Numerical methods will deliver a local minimum close to their starting
point. Therefore, we do not restrict our investigations to global solutions of (P). We
will assume that a fixed reference solution (y*,u*) is given satisfying certain first-
and second-order optimality conditions (ensuring local optimality of the solution).

The Lagrange functional £ : W(0,T) x L?(Q) x W(0,T) — R associated with
(P) is defined by

L(y,u, ) = .
J(y,u) = /0 (e (), A v v +v (Y(@), A1)y + (Y ()yz(t), A)) g dt

T
+ / ((F + bu)(t), M) dt.
0

For each fixed A € W(0,T), the Lagrangian is twice continuously Fréchet-differ-
entiable with respect to (y,u) € W(0,7) x L?(Q) and its second derivative is
Lipschitz continuous. Notice that, for fixed ¢, y(t) € V C C(Q) and y(t)y.(t) € H,
hence the inner product (y(t)y.(t), A(t))y is defined almost everywhere in [0, 7.
Moreover, it is integrable on [0, 7], since y € L?(0,T;V), y, € L*(Q), and X €
c((0, T, H).

Now we present the first-order necessary optimality conditions for a local solution
(y*,u*) of (P). The pair (y*,u*) has to satisfy together with an adjoint variable
A* € W(0,T) the state system (2.1), the constraints u* € U,q, the adjoint system

A VAL YA, = ag (¥t - 20) in Q,
(2.5) A =0 on X,
MT) = ag @) —2q) inQ

and the variational inequality
(2.6) / (Bou* + bA*) (u — u*) dzdt > 0 for all u € Usq.
Q

In the following we shall denote by (OS) the first-order necessary optimality system.

Remark 2.9. Recall that (2.6) is equivalent with
* _ _b(t7 .Z’) *
u*(t,2) = Pyt,0),u(t,2)] (m)\ (t, »’U))a

where Py, 51 : R = [y, 6] denotes the projection onto the interval [, d].

Proposition 2.10. There erists a unique Lagrange multiplier \* associated with
the optimal pair (y*,u*). Moreover, \* € W(0,T) holds and

@7 Ny <C (leal* @) = 20)llx + lae®* - 20)l12q))

where the constant C' > 0 depends on v, T and y*.
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Proof. Let 7 =T —t and A\*(7) = X\*(t) for 7 € [0,T]. Then problem (2.5) can be
transformed into the forward differential equation
(28) A —vA, =y (T =1 =T —7) (T —7) — 2T —7)) in Q
with the initial condition

X(0) = aqy*(T) — 2q) in Q.

Since ag € W1°(Q), 2q € V by assumption and y*(T') € V by Theorem 2.2, we
infer that aq(y*(T)—zq) € V. Hence, the existence of a unique Lagrange multiplier
A* € W(0,T) satisfying (2.7) follows directly from Proposition 2.7. O

In the following we assume that a fixed reference pair (y*,u*) € W(0,T) X Uaq
is given satisfying together with \* € W(0,T') the first-order necessary optimality
conditions. To guarantee that (y*,u*) is a local solution to (P) we have to assume
some kind of second-order sufficient optimality condition. We shall investigate
them along with a first-order sufficient optimality condition. Analogously to [6],
for arbitrary but fixed o > 0, we introduce the set

Qo ={(t,7) € Q : |Bo(t, 2)u™(t, ) + b(t, 2)A"(t,2)| = o}
Lemma 2.11. The optimal control is active on the set ).
Proof. Tt is well known that the variational inequality (9) is equivalent with
(Bo(t,x)u*(t,z) + b(t,2)A* (¢, z)) (v — u*(t,2)) > 0 ae. on Q
for all real numbers u satisfying u,(t,z) < u < up(t,x). From this we obtain

i v ua if (Bou* +bA*)(t,3) > 0,
u*(t,r) = { up if (ﬂgu* + b)) (t,x) <O.

O

Remark 2.12. On @, the control constraints are strongly active enough. Here we
do not the coercivity of L"(y*,u*, A*), since the first-order sufficiency ensures local
optimality.

The second Fréchet-derivative £" of the Lagrangian with respect to the variable
z = (y,u) in directions h; = (y;,u;) € W(0,T) x L*(Q), i = 1,2, is given by

£y N (s hy) = /Q aay: (T)y>(T) dz

+/ aQy1y2 + Bouius — Ayy1y2 dzdt.
Q

Notice that £"(y,u, A) is a continuous bilinear form. In fact, we estimate
L'y, u, N (b, ha) < llaellpee o) 1y (D)l lly2 (Tl
Tlaqll e g 1911520y 21115
1Bl pos gy llurll L2y lu2ll L2 (g)
+||)‘||L2(0,T;V)||y1||c([o,T];H)||?/2||L2(0,T;Loo(9))-

Due to embedding arguments there exists a constant depending on aq, ag and A
such that

(2-9) Lll(yaua)\)(hla h2) <C ||h1||W(0,T)><L2(Q)||h2||W(o,T)><L2(Q)-
We make use of the following second-order sufficient optimality condition.
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Assumption 1. There are constants k > 0 and o > 0 such that
’C”(y*7 U*7 )‘*)((ya u)a (y> u)) Z K ||u||iQ(Q)

for all (y,u) € W(0,T) x L*(Q), where u € Uyg, u = 0 on Q,, and y is the weak
solution to the linearized equation

Yt = VYer + (YY) = bu inQ,
(2.10) y = 0 onX
y(0) = 0 inQ.

Remark 2.13.  a) Due to Proposition 2.7, Assumption 1 implies the existence
of a constant & > 0 such that

£y, ) (5), 0,w) > & (Il .z + il ) -

b) On Q, the control is active. Thus, the coercivity of the operator L (y*,u*, \*)
is only assumed on the set @) \ Q,, which contains the inactive set and part
of the active set, where the constraints are only ”weakly” active.

Let us present a sufficient condition for Assumption 1.
Proposition 2.14. If A} < ag a.e. in Q or if
lag(y™ — 20)lp2g) + llea(y™(T) — zo)llg
is sufficiently small, then there is a constant k > 0 such that
L"(y*u*, A (g, w), (9, 0) > & Jlullsg)
for all (y,u) € W(0,T) x L%(Q) such that y solves (2.10).

Remark 2.15. Notice that this holds independently of ¢ so that Assumption 1 is
fulfilled for Q, = 0.

Proof of Proposition 2.14. In the proof we shall use a generic constant C' > 0.
Let (y,u) € W(0,T) x L?>(Q) and y solve (2.10). From Proposition 2.7 it follows
that ||yllwo,m) < C [lullp2(g)- Thus,

£ 0, A7) (0, ), ()
* 2 B 2 ﬂ 2
> [ (a0 =X2)y? dad + 5 oy + 55 Wl

If \¥ < ag a.e. in @, the claim follows directly with K = $/2. On the other hand,
applying Holder’s inequality and (2.7) we obtain

/Q)\;gfdwdt < AN 20,70 1l e o, 71, 19l L2(0,7; .0 (02))

IN

C(llaaly* (@) = 2l + oo = )l 2q)) Wlivo.r:

Now the claim follows if [laq(y*(T) — 2a)llg + [lag(y* — 29)|lz2@) < B/(2C). O

To solve the optimal control problem (P) we apply the SQP method. Suppose
that we have already computed (y™,u™, \") for some n > 0 with y™(0) = yo. Then
the next iterate

(y" ™, w™h) = (Y7, u") + (dy, u)
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is obtained by the solution of the following linear-quadratic optimal control problem
min J"(dy, du)

1
= Jl(ynuun)(dyadu) + 5 ‘c”(ynaun;/\n)((éyadu)a (5ya6u))

(2.112) = /Qag(y"(T) —20)0y(T) dx + /Q ag(y™ — 29)0y + Pou"du dadt
+% /Q aqdy(T)* dz + % /Qon(Sy2 + Bobu® — \y? dxdt
subject to
0yt — V0Yzz + (Y"0y)z —bou = —yI' +vyy,
(2.11b) —y"yg + f+bu™ inQ,
y = 0 on ¥,
sy(0) = 0 in Q
and to
(2.11c¢) u” + du € Uygy.

By (QP;,) we shall denote the optimal control problem (2.11).

In this work we shall prove that, under natural sufficient conditions, the SQP
method exhibits local quadratic convergence. To perform this analysis, we invoke
the concept of generalized equations. The known analysis of Newton’s method for
generalized equations is an elegant and useful tool to discuss the convergence of the
SQP method with reasonable effort. Moreover, we shall report on our numerical
experience with the SQP method.

3. GENERALIZED EQUATION AND NEWTON’S METHOD

Now we proceed by transforming the optimality system (OS) into a generalized
equation. For that purpose we define the set-valued mapping N : L=°(Q) — 2L7(@)
by

N(u) = { {¢ € Lo(Q) : (¢, — ) 12y < O forall @t € Upg} if u € Usg,
0 otherwise.
Then, the variational inequality (2.6) can be equivalently expressed by
0 € Bou + bA + N(u).
Remark 3.1. The normal cone to the set U,g C L?(Q), is defined by
Ny, (u) = {p € LX(Q)" : (¢, & — ) 12y 12(g) for all @ € Ung}
The set N(u) is the intersection of Ny, (u) with L>®(Q) (after identification of
L*(Q)" with L*(Q)).
As in the SQP method, the initial condition y(0) = yo is kept fixed in the

Newton method. The set-valued mapping u — N(u) from L®°(Q) to 27 (%) has
closed graph. Let us introduce the space

Y = L2(Q) x V x L*(Q) x V x L=(Q)
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endowed with the norm

Inlly = lleallzq) + lleally + 1l 2, + Ihally + Il =)

forn = (eq,0,79, Yo, Yu)- Furthermore, we define the Banach space X = W(0,T) x
L>(Q) x W(0,T) supplied with the norm

1y, w, Ml x = 1Yllwo,z) + 1l e gy + Ao, 1)-
Now we define the set-valued mapping 7 : X — 2¥ by

T (w) = ({0},{0},{0}, {0}, N (w)),
and the function ¥ : X - Y by F(w) = (F1,...,Fs), where

Fi(y,u,\) = Yt —VYso +yYe — f — bu,
Fy(y,u,A) = y(0) — yo,

Fs(y,u,\) = =M — v —yar —agly — 2q),
Fy(y,u,A) = XT) - aoy(T) - 2q),

F5(y,u,A) = Bou+bA
The optimality system is equivalent to the generalized equation
(3.1) 0 € Flw) + T (w),

where F is of class C!, and T has closed graph. Obviously, w* = (y*,u*,\*) is a
solution to (3.1).

To perform the convergence analysis of the SQP method, we apply (theoretically)
the generalized Newton method. Suppose that w™, n > 0, is already computed.
The next iterate w™! is given by the solution to

(3.2) 0€Fw") + F'(w")(w —w"™) + T (w).

In the following the set B,(v) denotes an open ball of radius r > 0 centered at
the point v. To ensure the convergence of the method we make use of the next
definition introduced by Robinson in [14].

Definition 3.2. The generalized equation (3.1) is called strongly regular at w* if

there exist r1 > 0, 79 > 0 and CL > 0 such that for all perturbations n € B, (0y)

the linearized equation

(3:3) n € F(w") + F'(w*)(w —w*) + T (w)

has a unique solution w = w(n) € By, (w*) satisfying the Lipschitz—property
lwim) —wm)llx < Cr [lm —m2lly for all m,n2 € By, (Oy).

The next theorem states sufficient conditions for the well-posedness of the gen-
eralized Newton method, and gives a convergence result. For a proof we refer to [2]
in the context of SQP methods and to [5] for generalized equations.

Theorem 3.3. Assume that (3.1) is strongly regular at w*. Then there are con-
stants > 0 and C > 0 such that for all starting values w® € B, (w*) the generalized
Newton method generates a unique sequence {w™}nen, which remains in B, (w*)
and satisfies the estimate

(3.4) lw™*! —w*||x < C |Jw™ —w*|[% forn > 0.

Remark 3.4. Estimate (3.4) expresses local quadratic convergence of the method.
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4. STRONG REGULARITY

This section is devoted to prove that Assumption 1 implies strong regularity
of (3.1) at w*. Therefore, we have to investigate the perturbed generalized equa-
tion (3.3). This equation can be interpreted as the optimality system of a linear-
quadratic control problem. In fact, (3.3) is nothing more than the first-order opti-
mality system for the following auxiliary linear-quadratic problem (QP,) associated
with the perturbation 1 = (eg, eq,vQ, Y2, Yu) € Y

min J(y,u;m) = / (a0 (y*(T) - 20) +10)y(T) dz

+ /Q (ao(y” — 70) + 10)y + (Bou® + vu)udsdt

1
+3 [ aalu(®) -y (@) da
Q
]. *\2 *\2 * *\2
+3 QaQ(y—y )"+ Bolu—u")” = Ag(y —y7)" dedt
subject to
Yt — VYoo + (W'Y —y'y; —f—bu = eqg in Q,
(4.1) y = 0 on ¥,
y(0) = yo+teq inQ
and to
(42) U € Uyg-

Since the problem is possibly non-convex, we cannot prove strong regularity in Us,q.
Therefore, we replace (4.2) by

ueﬁad:{veUad:v:u* on Qs}
and denote the associated linear-quadratic problem by ((5I\3,,)

Theorem 4.1. With Assumption 1 holding (()T’n) has a unique solution (g,u) for
everym €Y.

Proof. Let us split y = § + y¢, where the variable part § solves

Gt~ Voo + (470)s = bu inQ,
(4.3) g = 0 onZ,
g(0) = 0 inQ
and the fixed part y¢ is the weak solution to
Yi — Ve + (WY%)e = e+ f+yty; inQ,
(4.4) y© = 0 on ¥,
ye(0) = eq in Q.

Notice that
Ly u", A (s w), (y,w)) = L7(y" w2 (@), (§,u))
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Due to Assumption 1 the first term on the right-hand side is coercive. Since the
second term is linear in (§,u) and y° is fixed, the claim follows. O

The Lagrange functional associated with (QP,) and ((5[3,7) is given by
L(y,u, Aim) =
J(yau”?) - [) (yt(t)a)‘(t))v’,V +v (y(t)a)‘(t))v + ((y*y)w(t)a)‘(t))H dt

T
+ / (W95 + f + bu+eq)(£), A(t))  dt.

Due to the first-order necessary optimality conditions for (QT),,), the adjoint state
A satisfies the initial boundary value problem

A — VA — YAy = aQy+9 in Q,
(4.5) A =0 on X,
AT) = ay(T)+vq inQ

in the weak sense.

Corollary 4.2. For all y € C([0,T};V) and (va,7q) € V x L%(Q) there ezists a
unique adjoint state X € W(0,T) solving (4.5). Moreover, the following estimates
hold

46 Wiwer < C(Wlegmm + el + hallag )
o(

AN

(4.7) Moy <
for a constant C > 0.

Wlleqosvy + IMally + ellpag))

Proof. If we transform the time by 7 =T — t, ¢t € [0, T, the existence of a unique
adjoint state as well as both estimates follow from Proposition 2.7. O

Let us further introduce the following norms in X and Y by
lwlx = 1yllwor) + lullp2g) + [Mlwo,m
for w = (y,u,A) € X and

Inly = ”eQ”Lz(Q) + ||’YQ||L2(Q) + lvellg + ||’Yu||L2(Q)

for n = (eq,eqa,vQ, Y, Yu) € Y, respectively. Notice the difference in the notation
|- |x and [| - [|x-

Theorem 4.3 (L%-stability). Suppose that Assumption 1 holds and that for arbi-
trary 1m1,m2 € Y the pairs (yi,u;), i = 1,2, are the solutions to (QP,) with adjoints
Xi. Then there exists a constant C' > 0 independent on n1 and 12 such that

[(y1,u1, M) = (y2,u2, X2) | < C 1 — 72y
Proof. Due to the first-order necessary optimality conditions we have
(4.8) L' (Yns uns g3 ) (6Y — Y, 6u =y, A = Ay) >0
for all (6y, 6u,)) € W(0,T) x Ung x W (0,T). Let (yi,ui, As), i = 1,2, solve (QP,)
for 7, and 73, respectively. To shorten notation let us introduce
(Yn>un, Ag) = (Y1 —y2,u1 —u2, A — A1),
(e@ 0,710,702 7) = (g —€b,en — €0,7G — Vo 1o — 1 Yu — Vu)-
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Then we infer from (4.8) that

0 < L'(y1,u1,\;eta)

+L' (Y2, u2, A2; M) (Y1 — Y2, u1 — u2, A1 — A2)

= (v, yn(T))y + (e yn)L2(Q) (’Yuayn)p(Q)
—L"(y*, u*, A*) (Y, wn), (Y, un))

Y2 — Y1, U2 —U1,/\2 —/\1)

/\/—\

(4.9) - / (), MOy v + ¥ (n(), M (),

T
+/0 (Y yn)a(t), Ag (1)) g + ((bun + €Q)(t), Ay(t)) y dt
= ('VQayn(T))H + ('YQayn)Lz(Q) + ('Yu;yn)m(Q)

T
Ly N (s ) (s ) + / (eq(t), An(t)) .

Notice that y;, is the weak solution of the following parabolic problem:

(y'ﬂ)t - V(yn)mz + (y*yn)z = bu'ﬂ + eQ in Q,
yy = 0 on 3,
yn(0) = eq in Q.

To apply Assumption 1 we split y, = § + y°, where ¢ solves (4.3) with v = u,, and
y© is the weak solution to

Yi —Var + (U7Y%)e = e inQ,
(4.10) y* = 0 onk,
y(0) = eq inQ.

Applying Proposition 2.7 with a; = y% and a2 = y* we derive from (4.3) and (4.10)
the estimates

(4.11) ||?j||W(0,T) <C ||“n||L2(Q) and ”ye”W(O,T) <C (”eQ“H + ||6Q||L2(Q)) .
These bounds imply
(1.12) oy 0.7y < € (lnll gy + leallir + llegllao)-
Since w1, us € Usd, we have u = 0 on @Q,. By Assumption 1 we obtain
L' (y* w* N (@, un)s (@ un)) > 5 gl g)-
From this estimate and from (2.9) we arrive at

L"(y*uw*, X) (g, uy), (Yn> un))
=Ly, u", A) (G5 ug), (G, un)) + L7 (y", u*, A7) ((¥°,0), (v°,0))
+ 2L (y*, uw*, A*) (9, un) (y°, 0))

> & llunll}aiq) = C 9 lwiory (18 lhwio,ry + 16lhwio,ry + lenllzoqy )
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with a constant C' > 0. Thus, it follows from (4.9) that

2
K ||un||L2(Q)

< C (Ihelly + Ihallzig) + 7ull 2 ) Wallwo,r

+ ||6Q||L2(Q)||/\n||w(0,T)

+ C 1o,y (I lwioy + 18w oz + lunll oy ) -
Using (4.6), (4.11)—(4.12) and Young’s inequality we get
(4.14) lunllyagy < C Inn = sl
for a constant C' > 0. From (4.6), (4.12) and (4.14) the claim follows. O

(4.13)

The L2?-estimate of the previous theorem holds for perturbations in L2. If they
belong to L*°, the result can be improved. Let us use the notation introduced in
the proof of Theorem 4.3. From Proposition 2.7 we conclude that

(415)  alhwoy < € (Il agg + leally +lieall o)) < € s —mally-
Applying (4.7) and (4.15) we obtain

Ml < € (I =mlly + 1@l 2y + ally)
In Remark 2.9 we introduced the projection P. For a.e. (t,z) € Q@ we obtain

|w@wﬂ§@%ﬂhmwﬁn+mﬁwm,

which implies
ltnll o @y < € (Pl gy + Il =) )
for a constant C' > 0. Using (4.7) we arrive at
”(ymuna/\n)”X
<C (|771 - 772|Y + ”l’/n”c([o,T];v) + ||'YQ||L2(Q) + ||’YQ||V + ||’Yu||Loo(Q)>
for a generic constant C > 0. Since W(0,T) is continuously embedded into
C([0,T]; V), we infer from (4.15)
s ins Ml < € (I = ally + ellza(gy + ally + Ialli= () -
Thus, we have proved the next theorem.

Theorem 4.4 (L>®-stability). Suppose that Assumption 1 holds. Let (y;,u;, A;) be

the solutions to (él\)n) for arbitrary n; € Y, i = 1,2. Then there exists a constant
C > 0 independent on 1y and 1o such that

(4.16) [y, ur, A1) = (2, u2, A2)l|x < C [lm = n2ly-

Unfortunately, (4.16) holds only for u € U,y. We are not able to prove (4.16)
in Uyq. In this case, J, might be non-convex and (QP,) may not have a unique
solution. We mention that Proposition 2.14 provides a sufficient condition, where
we are able to take Uad = U,q- From Theorem 4.4 we obtain the following result.
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Theorem 4.5. Suppose that w* = (y*,u*, \*) solves the first-order necessary op-
timality conditions and satisfies Assumption 1. Then the generalized equation (3.1)

is strongly regular ot the point w* provided that the control set U,y is substituted
for Uyq in the definition of the operator T .

5. THE LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEM

In this section we investigate the linear-quadratic optimal control problem which
has to be solved in each level of the SQP method. Since we have the strict regularity
only on the set U,g we replace (2.11¢) by

(5.1) u” + du € ﬁad.

In contrast to (QP,) we shall denote the optimal control problem (2.11a), (2.11b)
and (5.1) by (QP,,).

Let us choose (y°,u®) € W(0,T) x Unq such that y°(0) = yo holds. The Newton
direction du has to satisfy

ul :=ug —u" < ou <wup —u” =:up ae. in Q
and on @, we have du = 0. To shorten notation, we set
(5.2) 9" ==y +vyg, — Yy, + [+ bu"
Furthermore, we define h : Q — R by

(5.3) h= _% in Q.

The first-order necessary optimality conditions for (@n) are given by the state
equation (2.11b), the control constraint v € U,g and the adjoint equation for §\

—0A — VOAzg — Y™ 0N, = ag(y" + 0y — 2Q) in @,
(5.4) A = 0 on Y,
SXT) = aa(y™(T)+6y(T) - 20) in Q.

Proposition 5.1. For every du € L*(Q) and every n the state equation (2.11b)
and the adjoint equation (5.4) admit unique solutions dy,d6\ € W(0,T).

Proof. By assumption we have y° € W(0,T). Setting a; = 32 and a2 = y° the
existence of a unique dy € W(0,T) follows from Proposition 2.7. As in the proof
of Corollary 4.2 we obtain A € W(0,T). Since y' = ¢y° + dy € W(0,T) the claim
follows by an induction argument. |

Proposition 5.2. The optimal control problem (él\Dn) admits a unique solution, if
[(y™, u™ A™) — (y*,u*, A\*)|x is sufficiently small.

Proof. Using Holder’s inequality and Proposition 2.7 we estimate
(L™ um™ A = L7y, u™, A7) (v, w) (g, ) |
< / A7 = Xsly?da < A2 = X Ol glly Ol Iy Ol o

< Wyl o, 19l 20,1 1A = ANl 20,
< C [lulZag) X" = Xl 2o ziv)
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for a constant C' > 0. Hence, there exist € > 0 and & > 0 such that
(5.5) L'y u™, A (g w), (y,1) > & [lullzz )

for all A" with ||A\™ — X*||p2(0,,v) < € and for all (y,u) € W(0,T) x L*(Q), where
u € Uy, u =0 on @, and y is the weak solution to the linearized equation

Yt = VYoo + (W*'Y) = bu inQ,
(5.6) y = 0 onk,
y(0) = 0 inQ.

If [|y™ — y*|lwo,r) is sufficiently close, (5.5) and (5.6) hold with y* replaced by y"
in (5.6). This can be proved in a standard way. For instance, we refer to [18, 19].
Therefore, the optimal control problem is convex with linear constraints. Thus, the
claim follows by standard arguments. O

Let us discuss the relationship between the Newton and the SQP method. In
the following we denote by @™ = (§",a"™, \") the iterates generated by the SQP
method performed on Uad. The iterates of the generalized Newton method are
w™ = (y"*,u", \"). We investigate both methods initiating from the same starting
value w™ = w". If ||w™ — w*||x is sufficiently small then there exists a unique
solution (§™*!,4"+!) to (QP,) with an associated Lagrange multiplier A"+ due
to Proposition 5.2. On the other hand, @™+ = (§7*+!, an+! An+l) solves the
generalized equation (3.2) at w” (based on the set U,q). For ||w" — w*||x < 7,
one step of the generalized Newton method delivers the unique solution of (3.2) by
Theorem 3.3. As w™*! solves the generalized equation, which is locally unique, we
get w" Tt = "L, If [|w™ — w*||x < min(r,7) =: g, then Theorem 3.3 implies that
w™t € B,(w*). Thus, ||0" ! —w*||x < o. Hence, we are able to perform the next
step in both of the methods. Moreover, Newton’s and SQP method are identical
on Uad-

Theorem 5.3. Let w* = (y*,u*,\*) satisfy the optimality system (OS) together
with Assumption 1. Suppose that a starting value w® = (y°,u°,\°) € X is given
with u® € Ung and ||[w® — w*||x < o. Then the generalized Newton method is
equivalent to the SQP method in Usg.

The next corollary follows directly from Theorems 3.3 and 5.3.
Corollary 5.4. With the assumptions of Theorem 5.3 we have for alln € N
||(y"+1=u"+17)‘n+1) - (y*au*a ’\*)”X < c ”(yn’un”\n) - (y*7U*= Xk)”%{?

where C > 0 is a constant and (y™,u™, \™) are the iterates generated by the gener-
alized Newton or SQP method.

This convergence result still contains a formal obstacle for the numerical appli-
cation. It requires the a-priori knowledge of a set @), for some o > 0, hence the
unknown solution w* should be known in advance. Let us briefly explain a way out
of this difficulty.

Newton’s method is known to be only locally convergent. Hence we have to start
the iteration in a neighborhood of the unknown solution. In our SQP method, we
cannot do better, and we must assume additionally that the iterates stay in this
neighborhood (see the comments and the counterexample for this issue in [7]).

Suppose that the second order sufficient condition is satisfied with o > 0. Let w°
be the initial iterate and define U, = {u € Uaq|[|u — u®||p(g) < €}, € sufficiently
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small. If u° is close to u*, then all elements u € U =4 are close to u*. In this case
one can show that (QP,), based on U, instead on Usq, has exactly one solution
u™t, which is active on Q, and equal to u* there, provided that € is sufficiently
small. We do not discuss this intuitively clear observation and refer to the analysis
in [18] for a similar parabolic problem.

In the numerical application we therefore have two ways to guarantee conver-
gence. We might add an additional constraint of the form —¢ < u —u°® < ¢ forcing
the algorithm to stay in a neighborhood. Alternatively, we can do without this,
if the algorithm is monitored to converge. The latter is what we observed in our
numerical tests.

6. A PRIMAL-DUAL ACTIVE SET ALGORITHM

To solve the optimal control problems (QP,,), in each level of the SQP method
we use a primal-dual active set strategy. This algorithm is based on a generalized
Moreau-Yosida approximation of the indicator function of the set U,q of admissible
controls. For more details we refer to [3].

Let the superscript n and the subscript k denote the current SQP- and active
set iteration, respectively, and dual variables 6§, stand for the Lagrange multipliers
associated with the inequality constraints

u” + du € Uyg.

Suppose that (dur_1,06r—1) are given. Then the ul-active and uj-active sets of
the current iterate are chosen according to

4 = A2 €Q:buatr) + 820D g ae. mq),
5§k—1(ta$)

c

A {t,z) € Q : dup—1(t,) + > uf(t,z) a.e. in Q},

where ¢ > 0 is a scalar, and we set A} = A? U A,. Furthermore, we define the
inactive set

5£k_1(t, .’I?)

I7 = {(t:2) € Q: ul(t, o) < bups (t,2) + 42

< wugp(t,z) a.e. in Q}.

Notice that, in general, 4™ 4+ duj_1 need not be feasible on I}}. Notice that the
definition of A} and I}} involve the primal variable du as well as the dual variable 6
corresponding to the inequality constraints. In Algorithm 1 below the identification
A7 | = A7 means A7 = A7 | and A, = 4] .

Algorithm 1 (Primal-dual active set strategy).

a) Choose ¢ > 0 and starting values (dug, 6&p) € Usg x L™(Q), and set k = 1.
b) Compute A, A, and .
) Ifk>2, Al = An_| I =17 | then STOP.
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d) Else, find (y,\) € W(0,T) x W(0,T) satisfying

Yt — VYaz + (Y"Y)s = bup +g" in ZZ,
Yt — VYor + U"Y)e = bug +g" in Ay,
Yt — VYze + (YY) —hA = g" in Iy,
= 0 on X,
(6.1) Y '
y0) = 0 in Q,
—aQY + Ay — A — VAo —Y"As = a@(y" - 2q) in Q,
A =0 on Y,
ay(T)+ XT) = aoy™(T)—=z2q) inQ,
set (0yg,0 k) = (y,A) and
uy mn ZZ,
dup = ¢ u? in A7,
h 6)\19 mn Il?'

e) Put §& = oA, — Boduk, k =k + 1, and return to b).

Remark 6.1. Let us mention that Algorithm 1 stops feasible if there exists an
iteration level k such that A} = A}, . In particular, in this case we have u" +duy €
Uqa-

Proposition 6.2. With the hypotheses of Proposition 2.14 there exists a radius
7 > 0 so that Algorithm 1 is well-defined if

(6.2) (™, u™ A") = (" u™, M%)l x <7

Proof. Due to Proposition 2.14 and Remark 2.15 the second-order sufficient opti-
mality condition holds at (y*,u*, \*) for Q, = (. Using the regularity properties of
the Lagrangian, we can prove that there exists a radius # > 0 such that the second-
order sufficient optimality condition holds for all (y™,u™, A™) € B:(y*,u*, \*), see
the proof of Proposition 5.2. Hence, the linear system (6.1) is uniquely solvable. O

7. NUMERICAL EXPERIMENTS

To solve (P) we use the so-called ”optimize-then-discretize” approach, i.e., we
compute the solution of the linear-quadratic subproblems (QP,,) by discretizing
Algorithm 1, i.e., by discretizing the associated systems (6.1).

In our test runs we also compare the optimal solutions with the solutions of the
unconstrained problems, i.e., for U,y = L%(Q).

For the time integration we apply the backward Euler scheme while the spatial
variable is approximated by piecewise linear finite elements. The programs are
written in MATLAB, version 5.3, executed on a Pentium IIT 550 MHz personal
computer.

Run 1. In the first test example we choose T =1, v = 0.01, yo = 0, and f = 0.
For N, M € N the grid was given by

i . JjT .
xizﬁforz:o,...,Nandtjzﬁforgzo,...,M.

Clearly, the solution to (2.2a) with 4 = 0 is y = 0. For the optimal control problem
we take ag = 0, ag = 1, g = 0.0175 and b = xg,, where xg, denotes the
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x—axis 0 o t—axis

FIGURE 1. Desired state zg for N = M = 50.

characteristic function of the set @, = (0,7/2) x (0.5,0.75). The desired state is
shown in Figure 1.

(i) First we solve the optimal control problem with U,q = L?(Q) by applying the
SQP method. Then the solution (dy,du) of (QP,,) as follows: First we solve
the linear system

(69)t — v(0Y)zz + (y"0y)z — hOX = g" in Q,

oy = 0 on X,

(7.1a) oy(0) = 0 %n Q,
(X2 = a@)dy — (BN — v(6N)as — 4"(0N)s = Q" —29) i Q,

A =0 on ¥,

agdy(T) +OAT) = aa(y™(T)-zq) in®,

where g™ and h were introduced in (5.2) and (5.3), respectively. Next, we
obtain du from

(7.1b) du = hoX in Q.

The discretization of (7.1a) leads to an indefinite system H"(8y,dA)T = r™,
where H™ is of the form

" A" B™T
(£ @),
As starting values we take y° = 0, u® = 0 and \° = 0. We stop the SQP
iteration if the associated residuum is less than 1079, i.e.,
Res(n) = [[VL(y", u", A") || ,2(gys < 10°°.

Here, V stands for the gradient of £ with respect to (y,u, ). Notice that
Vo L(y™,u™, A") = 0 is guaranteed by (7.1b). We do not have to check it
numerically.
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FIGURE 2. Optimal state and control for U,y = L?(Q) and N =
M = 50.

The linear system (7.1a), which has to be solved in each level of the SQP-
iteration, is treated in three different ways:

1.) (SQP-LU): utilize a LU-factorization with pivoting (MATLAB routine
1u),

(SQP-GMRES): apply the Generalized Minimum Residual Method (MAT-
LAB routine gmres) and stop the iteration if the relative residual

llr™ — H™(8y,60)7 I,
[l 1,

is less than 107°. Here, || - ||> denotes the Euclidean norm.
(SQP-GMRES-IN): use the GMRES method and stop the iteration if the
relative residual is less than the actual value of Res(n). In this way, the
precision for solving the linear system (7.1a) is adapted to the size of the
outer iteration. The closer the iterates are to the optimum, the finer the
system is solved.
As a preconditioner for the GMRES method we took an incomplete LU-
factorization of the matrix

0 PT )

p=(7 %
by utilizing the MATLAB function luinc(D,1e-05). Here, the matrix P is
the discretization of the heat operator y; — vy, with homogeneous Dirichlet
boundary conditions at = 0 and z = 1, and the matrix P" is the discretiza-
tion of its adjoint. In Figure 2 the discrete optimal solution is presented.
All the three variants of the SQP method stop after five iterations and their
optimal solutions coincide. Let us mention that no step size control is neces-
sary in this example. The needed CPU times are given in Table 1. It turns
out that for this example the inexact GMRES method is the fastest method.
Next we introduce inequality constraints by choosing u, = 0 and w, = 1.
We solve the linear system (6.1) utilizing analogous versions of (SQP-LU),

2.)
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(SQP-LU) | (SQP-GMRES) | (SQP-GMRES-IN)
N=M=50] 137 66 59
N=M=60]| 249 116 105

TABLE 1. CPU-times in seconds.

SQP iterations || Alg. 1 iterations | residuum CPU time
1 6 6.19¢-03 90.9 seconds

2 3 6.81e-04 76.7 seconds

3 2 2.23e-06 52.2 seconds

4 1 3.14e-09 26.7 seconds

> = 276.7 seconds

TABLE 2. Number of inner iterations, residua, and CPU times for
(SQP-LU).

SQP iterations || Alg. 1 iterations | residuum CPU time
1 6 6.19¢-03 63.2 seconds

2 3 6.81e-04 33.4 seconds

3 2 2.23e-06 21.7 seconds

4 1 3.14e-09 11.3 seconds

> = 169.5 seconds

TABLE 3. Number of inner iterations, residua, and CPU times for
(SQP-GMRES).

SQP iterations | Alg. 1 iterations | residuum CPU time
1 6 6.18e-03 47.2 seconds

2 4 6.65e-04 30.0 seconds

3 2 2.08e-06 15.8 seconds

4 3 4.88e-09 27.3 seconds

> = 160.5 seconds

TABLE 4. Number of inner iterations, residua, and CPU times for
(SQP-GMRES-IN).

(SQP-GMRES) and (SQP-GMRES-IN). For N = M = 50 the behavior of the
SQP-method combined with Algorithm 1 is presented in Tables 2—-4. We check
Res(n) < 107° only on the current inactive set for u. By our active set strat-
egy, the variational inequality is automatically satisfied on the remaining set.
Therefore, the necessary optimality conditions are satisfied up to precision
108,

The needed CPU times are given in Table 5 for N = M = 60. Again, for a
fine grid the inexact GMRES method SQP-GMRES-IN is the fastest variant.
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FiGure 3. Optimal state and control for u, = 0, up =
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TABLE 5. CPU times in seconds.

X-axis

t-axis

1, and

u=~0

ue L*(Q)

u € Uyg

J(y*, u*)

0.12653

0.09319

0.10743

TABLE 6. Values of the cost functional for N = M = 50.

The discrete optimal solution is plotted in Figure 3. It turns out that (6.1)
is uniquely solvable throughout the iteration process. Therefore, Algorithm 1
is well-defined for @, = (). The values of the cost functional are presented in

Table 6.

Run 2. In the second test we want to track the optimal state to a desired state at

the terminal time.

We take T =1, v =0.1,

|

1 in (0,0.5]

0 otherwise,

and f = 0. The grid is the same as in the previous test example. To solve (2.1)
with v = 0 we apply Newton’s method at each time step. The algorithm needs 1
second in case of N = M = 50. The numerical solution is shown in Figure 4.

Now we turn to the optimal control problem. We choose ag =1, ag =0, Bg = 0.2
and b = xq, with Q. = (0,97°/10) % (0,0.75). The desired state is zo(z) = sin(27z).
First we solve (P) with U,y = L2(Q). The starting values for the SQP method are
y° =0, u® = 0 and A’ = 0. The stopping criterion is the same as in Run 1. In
Figure 5 the discrete solution is plotted. All three versions of the SQP method stop
after four iterations. The needed CPU times are given in Table 7.
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FIGURE 4. Solution for v = 0 and N = M = 50.
(SQP-LU) | (SQP-GMRES) | (SQP-GMRES-IN)
N =M =50 128 58 53
N =M =60 299 126 118

TABLE 7. CPU-times in seconds.
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FIGURE 5. Optimal state and control for N = M = 50.
Now we take u, = —0.5 = —uy. The discrete solution is presented in Figure 6.

For N = M = 50 the behavior of the SQP-method combined with Algorithm 1 is
presented in Tables 8-10.
The values of the cost functional are presented in Table 11.
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FIGURE 6. Optimal state and control for u, = —0.5 = —u; and
N =M =50.
SQP iterations || Alg. 1 iterations | residuum CPU time
1 7 1.25e-02 86.7 seconds
2 5 1.12e-03 148.0 seconds
3 3 6.54e-06 96.8 seconds
4 3 5.04e-09 96.9 seconds
>~ = 450.9 seconds

TABLE 8. Number of inner iterations, residua, and CPU times for

(SQP-LU).
SQP iterations || Alg. 1 iterations | residuum CPU time
1 7 1.25e-02 59.6 seconds
2 5 1.12e-03 67.6 seconds
3 3 6.54e-06 32.4 seconds
4 3 5.04e-09 30.7 seconds
> = 220.1 seconds

TABLE 9. Number of inner iterations, residua, and CPU times for
(SQP-GMRES).

APPENDIX A. PROOF OF THEOREM 2.2

To derive an estimate for ||y(t)||g we choose ¢ = y(t) in (2.2a). Then we get
1d
(A.1) oY ly Ol + v ly @Iy = ((f + bu)(#),y() -

From (A.1), Poincaré’s and Young’s inequality we infer that

& W@ +v I < - 107 + bl
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SQP iterations | Alg. 1 iterations | residuum CPU time
1 3 1.47e-02 19.3 seconds

2 5 2.09e-03 49.0 seconds

3 3 2.62¢-05 23.5 seconds

4 3 3.30e-08 25.0 seconds

> = 146.7 seconds

TABLE 10. Number of inner iterations, residua, and CPU times
for (SQP-GMRES-IN).

u=0 |ueL?Q)|u€Uu
J(y*,u*) || 0.28873 | 0.22292 | 0.24455

TABLE 11. Values of the cost functional for N = M = 50.

Recall that in our case the Poincaré constant is equal to 1. Thus,

eut 5
(A2) G (e M@By) < <10+ b0l

Integrating (A.2) yields

vT
2 —v 2 € 2
@l < e ol + - 1f + bullia)
2 | 27 2 2 2
< ol + == (I12(g) + 1Bl gy lulz g ) -

Hence, there exists a constant C; > 0 depending on v, f, and gy such that

(A.3) Iyl o 7,ary < €1 (1 + llull oy ) -
Due to the differential equation we get

ly: Dl < @+ lly@Oll) ly@Ily + [1(F + bu) D)l -

This gives

||Z/t||L2(0,T;V') < (V+ ||y||L°°(0,T;H)) ||?/||L2(0,T;V)
(A4)
+ 1F 2y + 1Bl oo (g lull L2 ()

Integrating (A.1) over (0,7) we end up with

(4.5) ll 20,750y < o (14 llullpa(g))

where the constant C> > 0 depends on v, yo, and f. From (A.4) and (A.5) we
conclude that there exists a positive constant Cs = C3(v,yo, f) such that

lhwiom < Cs (1+ ulBa)) -



OPTIMAL CONTROL OF THE BURGERS EQUATION 25

APPENDIX B. PROOF OF COROLLARY 2.4
We will prove that there exists a constant C' > 0 satisfying

(B.6) Wiy < C (1+luli2q)

for a constant C' > 0. Then the claim follows by an embedding argument. Choosing
© = —Yz(t) in (2.2a) we obtain

B 5% WO+ el = (e = ] = ) (0,302 (0) -

As in [13, Theorem 2] we find

ly@lly < llgolly + C llyollz + 15 + bull 2, ¢ € [0,T] ace.
for a constant C' > 0. This bound gives together with (A.3) and (A.5)

(B-8) ”y”Loo(o,T;v) + ”y”Lw(o,T;H) + ”y”LZ(o,T;v) <C (1 + ||u||L2(Q)) .
Integrating (B.7) we infer from Holder’s and Young’s inequalities and (B.8) that
(B.9) il o, rsmr@ynvy < C (1+ lullzagy ) -

Using the differential equation y; = vy, — vy, + f + bu, (B.8) and (B.9) we
arrive at (B.6).
APPENDIX C. PROOF OF PROPOSITION 2.7

For t € [0, T] we introduce the bilinear form a(¢;-,-) on V x V by

altiv.8) = [ 10'd + a6 + ax(t)pods.
Q
Then, a is continuous. In fact, we obtain

la(t; o, #)| < (V + ||a1||Loo(o,T;H) + ||a2||Lco(o,T;H)) llellyll¢lly

for ¢, € V and t € (0,T) a.e. Due to Agmon’s inequality, see [16], there exists a
constant C'4 > 0 satisfying

(C.10) oIy < Cat gl for all o € V.
Utilizing (C.10) and Young’s inequality we find

altip,0) 2 3 llglly = C llglly forall p € V and t € [0,7] ae.

for a constant C' > 0 depending on a;, a2 and v. Hence, the existence of a unique
solution v € W(0,T) of (2.4) follows from [4]. Now we proceed by proving estimates.
For that purpose we multiply the differential equation by v and integrate over (2
and (0,¢) for ¢t € (0,T). Using Holder’s inequality we get
1 2 2 1 2
2 @l + v [lvllz20,4) < 5 lvollzr + 9l 2y 10l L2 0,41y
+llatlle o,y 102l 20,6, 191l 20,650 ()
+ llazll oo, 71 m) 101 20,4500 () 1V L2 0,81

From Agmon’s and Young’s inequalities it follows that

2 2
(C11) @I + ¥ 00,0 < C (19l ) + eollyy + 1011320 10m))
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for t € [0,T]. Due to Gronwall’s inequality we find

o)l < € (llgl =gy + loll7r) ~ for ¢ € [0, 7).

Thus,

(C.12) loll o,z < € (gllgz(y + lleolyr) -
Using (C.12) we infer from (C.11)

(C.13) loll 2o,y < C (llgll2qq) + llvoll) -

Now the estimate in the W (0, T")-norm follows from (C.12), (C.13) and vy = vvg, —
a1V —asv; +¢g. We continue by proving the second estimate. Therefore, we multiply
the differential equation with —v,, and integrate over 2 and (0,t) for t € (0,7).
Holder’s inequality yields

1 2 2 1 2
3 lv@®lly +v ||Uzz||L2(0,t;H) < 3 llvolly + ||g||L2(Q)||v$$||L2(0,t;H)

+ ||a1||c([o,T];H)||Um||L2(o,t;L°°(Q))||Um||L2(o,t;H)
+llazlle o, mim 10l 20,62 @) 1veellz2(0,6m)

for ¢t € [0,7T] a.e. Using Agmon’s and Young’s inequalities, (C.12), (C.13) and the
estimate ||vo||g < ||vo||lv we conclude

@I + v sl < € (Il9l3ag) + leoll?)  for t € 0,7,

Hence,

(C14)  lellp o,z + oeallzozim < C (glliaggy + lvolly ) -
From (C.12)—(C.14) and vy = vv,, — a1v — a2v, + g the stated estimate follows.
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