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Abstract. A method of receding horizon type is considered for a simplified linear-quadratic
parabolic boundary control problem with bound constraints on the control. The performance of the
method is examined numerically and confirmed by an associated analysis. In particular, the method
is shown to converge to a unique fixed point. Moreover, a new hybrid method is suggested.
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1. Introduction. In this paper, we discuss a suboptimal strategy of receding
horizon type for the following simplified class of parabolic boundary control problems
with bound constraints on the control:

(P) min J(u) =
1

2

1
∫

0

(y(x, T ) − yd(x))2dx +
ν

2

T
∫

0

u(t)2dt

subject to

yt(x, t) = yxx(x, t)
y(x, 0) = y0(x)
yx(0, t) = 0
yx(1, t) = α (u(t) − y(1, t)),

(1.1)

x ∈ (0, 1), t ∈ (0, T ), and subject to the bound constraints

ua ≤ u(t) ≤ ub (1.2)

to be fulfilled a.e. on [0, T ]. The control u is taken from L∞(0, T ). In this setting,
T, ν, α are fixed positive constants, while ua < ub are given real numbers. Moreover,
yd and y0 are given in L2(0, 1).

Problems of this type were frequently discussed in literature. It is easy to show
that (P ) admits a unique optimal control ū. Necessary and (by convexity) sufficient op-
timality conditions were derived already years ago, see the references in [21]. Thanks
to the low dimension one of the domain Ω = (0, 1), (P ) can be easily solved nu-
merically by various methods. It can be fully discretized and hereafter solved as a
finite-dimensional quadratic programming problem, [10]. An alternative strategy is
to work with different projection methods [15, 16], or to apply active set strategies
such as the Bertsekas projection method [4, 10] or primal-dual active set strategies [3].
Today, it is by far not a challenge to solve (P ) numerically. On the other hand, owing
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2 F. TRÖLTZSCH AND D. WACHSMUTH

to its simplicity, the problem is a good candidate to study analysis and performance
of suboptimal control methods.

Techniques of this type turned out to be efficient suboptimal strategies to solve
very large scale optimal control problems. Their origin is the control of flows described
by the instationary Navier-Stokes equations, where it is rather hopeless to try an
accurate optimal solution in a reasonable time. We refer to [5, 7, 11]. In a number of
recent papers, the advantages of this method were demonstrated again, see [11, 12, 13].

Suboptimal strategies also are interesting from another point of view. One sub-
optimal approach to stabilize dynamical systems leads to Model Predictive Control
(MPC), [9]. Because this area has already been investigated intensively, there are
many papers dealing with the properties of MPC-controlled finite-dimensional sys-
tems, see for instance [14, 19] and the references in [2, 18]. The application of MPC
to partial differential equations is a more recent research topic, confer the papers
[11, 13].

Encouraged by this success, we applied a method of instantaneous control type
to a problem of cooling steel with linear terminal time objective functional, nonlinear
parabolic equation, and constraints on control and state. We were able to drastically
reduce the computing time with almost no loss of accuracy in comparison with an
exact optimization [22].

However, it was reported by other scientists that the method of instantaneous
control may deliver results far from optimum for other problems with terminal time
functional. To study its performance in this case, we applied the following simple
suboptimal strategy of instantaneous control type to (P ): Split the interval I = [0, T ]
into n small subintervals Ij = [tj−1, tj ] of uniform length τ , define tj = j T/n, and
take piecewise constant controls u(t) = uj on Ij .

The objective of (P ) is to approximate yd as close as possible in the L2-norm at
the final time T . Therefore, it might be natural to first choose a real control value
u1 such that ‖y(·, t1) − yd‖ is minimized on the first subinterval I1, then - starting
from y(·, t1) - to select u2 on I2 such that ‖y(·, t2) − yd‖ is minimal etc. The idea
behind seems to reflect part of our experience in daily life. Aiming to reach a target,
we try to approach it in each step. However, this simple strategy exhibits a weak
performance. This was experienced also by other authors.

Let us comment on the terminology ”instantaneous control” at this point. The
method described above consists of a sequence of optimization problems to be solved
on short horizons of length τ . Therefore, it is a particular case of receding horizon
techniques – a (τ, 1)-receding horizon method or method of model predictive control.

Instantaneous control in its actual sense means that only one gradient step is
performed in each time step to approach the optimum rather than to solve the short
time problems up to their minimum, [6]. See also [7], and for the stability analysis of
associated closed-loop control laws, [11, 13]. In contrast to this, the simple method
explained above finds the optimum for each time step.

We present a mathematical proof that this method of receding horizon control
will converge to a unique fixed point. Hence, the method can be used to stabilize the
system under consideration. This stable fixed point might be far from the desired
state, which explains the weak performance of the (τ, 1)-receding horizon method
under the cost functional J . It also serves as background to develop a better method.
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This improved method is another main result of our paper. Moreover, we report on
the application of the method for a domain Ω of dimension 2.

The paper is organized as follows: First, we discuss the convergence analysis
for the one-dimensional case. We study the (τ, 1)-receding horizon method and a
more general method, where the optimization is performed over more than one time
horizon, the (lτ, l)-receding horizon method. Moreover, we present numerical results
of the receding horizon technique described above and explain its weak performance.
Next we report on other methods that improve the performance and still are very
fast. Finally, the case of a two-dimensional domain is briefly sketched.

We will use the notation (t, m)-receding horizon method with the following mean-
ing: t stands for the length of the time horizon, where the optimization is performed
in one step of the method, while m denotes the number of time steps the horizon is
shifted to obtain the next optimization period (of length t).

2. Analysis of the (τ, 1)-receding horizon method. Although the (τ, 1)-
method is a particular case of the more general (τ, l)-method, we start our presenta-
tion with this simpler case aiming at introducing the main idea and associatd basic
notations. Let us first express problem (P ) in a shorter setting of functional analysis.
We define

Uad = {u ∈ L2(0, T ) | ua ≤ u(t) ≤ ub a.e. on [0, T ]}.

For each u ∈ Uad, there exists a unique weak solution y solving the equations (1.1).
This is the state associated with u. Let G = G(x, ξ, t) denote the Green’s function to
(1.1). It is known that y is a weak solution to (1.1) iff

y(x, t) =

1
∫

0

G(x, ξ, t)y0(ξ) dξ +

t
∫

0

G(x, 1, t − s)α u(s) ds. (2.1)

As mentioned in the introduction, we split [0, T ] into n subintervals of uniform length
τ = T/n. Define on [0, τ ] linear and continuous operators Dτ : L2(0, 1) → L2(0, 1)
and Sτ : L2(0, τ) → L2(0, 1) by

(Dτ w)(x) =
1
∫

0

G(x, ξ, τ) w(ξ)dξ

(Sτu)(x) =
τ
∫

0

G(x, 1, τ − s) α u(s)ds.

For the continuity of these operators we refer, for instance, to [21]. Then (Dτ w)(x) =
y(x, τ), where y(x, t) is the unique solution of the initial-boundary value problem

yt(x, t) = yxx(x, t)
y(x, 0) = w(x)
yx(0, t) = 0

yx(1, t) + α y(1, t) = 0,

(2.2)

while (Sτu)(x) = z(x, τ), where z(x, t) solves

zt(x, t) = zxx(x, t)
z(x, 0) = 0
zx(0, t) = 0

zx(1, t) + α z(1, t) = α u(t).

(2.3)
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The (τ, 1)-receding horizon method is defined as follows. Let ej = ej(t), j = 1, . . . , n,
denote the piecewise constant basis functions

ej(t) =

{

1 on Ij

0 on [0, T ] \ Ij .

We will apply controls u having the form

u(t) =
n

∑

j=1

uj ej(t)

with unknown real numbers uj . Define yj(x) = y(x, tj), j = 0, . . . , n − 1. Starting at
j = 1, we subsequently solve the short horizon control problems

min
u

ϕ(yj−1, u) =
1

2
‖ y(·, tj) − yd‖

2
L2(0,1) +

ν

2
· τ · u2 (Pj)

subject to

yt(x, t) = yxx(x, t)
y(x, tj−1) = yj−1(x)

yx(0, t) = 0
yx(1, t) + α y(1, t) = α u,

(2.4)

ua ≤ u ≤ ub,

t ∈ [tj−1, tj ], where u is a real number.

The heat equation (2.4) is autonomous in time, hence y(x, tj) = ỹ(x, τ), where
ỹ(x, τ) solves (2.4) in (0, τ) subject to ỹ(x, 0) = yj−1(x). We can express this fact
equivalently by

y(·, tj) =
1
∫

0

G(·, ξ, τ) yj−1 (ξ) dξ +
τ
∫

0

α G(·, 1, τ − s) u ds

= Dτ yj−1 + u Sτ e1

(notice that u ∈ R). In what follows, we shall indicate suboptimal controls by a bar.
Therefore, the optimal solution of (Pj) is denoted by ūj . Moreover, we introduce for
convenience the notation e := Sτ e1. In our paper, ‖·‖ stands for the norm of L2(0, 1),
and (·, ·) denotes the associated natural inner product.

(Pj) is equivalent to a very simple one-dimensional quadratic programming prob-
lem that can be solved explicitely. In fact, define f : L2(0, 1) × R → R by

f(y, u) :=
1

2
‖yd − Dτy − u e‖2 +

ν

2
τ u2.

Then ϕ(yj−1, u) = f(yj−1, u) and

f(yj−1, u) =
1

2
a u2 + bj u + cj ,

where

a = ‖e‖2 + ν τ
bj = (e, Dτ yj−1 − yd)

cj =
1

2
‖Dτ yj−1 − yd‖

2.
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Therefore, the solution ūj of (Pj) is obtained by minimizing 1
2a u2 + bj u subject to

u ∈ [ua, ub],

ūj =











ua, if −
bj

a < ua

−
bj

a , if −
bj

a ∈ [ua, ub]

ub, if −
bj

a > ub.

(2.5)

We define the suboptimal control ū for (P ) by ū(t) = ūj , t ∈ Ij . It is obvious that
ū can be determined very fast. Since the minimization of (Pj) is done analytically,
the only work is to set up (Pj). To do this, the most time consuming step is the
computation of Dτ yj−1, i.e. the solution of the heat equation (2.2) for w = yj−1 on
(0, τ) × (0, 1). Then a, bj , cj can be found by numerical integration. The function
e = Sτe1 has to be computed only once by solving (2.3). Altogether, n + 1 PDE
solves are needed.

Clearly, this suboptimal method stops after n steps. Nevertheless, let us consider
infinitely many repetitions of the iteration. Each iteration assigns to an initial function
y = y(x) a real optimal control number ū = ū(y(·)) for the time horizon [0, τ ] and a
new initial function ȳ(x) by

ȳ = Dτ y + ū (y(·)) e. (2.6)

Definition 2.1. The mapping y 7−→ ȳ defined by (2.6) in L2(0, 1) is denoted by

Φ, Φ(y) := Dτ y + ū(y) e.

We shall prove in Section 4 that Φ has a unique fixed point

y∗ = ū (y∗) (I − Dτ )−1 e. (2.7)

The function yf := (I−Dτ )−1 e can be described as follows: We know yf = Dτyf +e.
In other words, yf (x) = y(x, τ), where y is the solution of an initial boundary value
problem with initial value y(x, 0) = yf (x). Hence y(x, 0) and y(x, τ) must coincide.
We have obtained yf (x) = y(x, τ), where y solves the following boundary value prob-
lem subject to periodic boundary conditions with respect to the time variable:

yt(x, t) = yxx(x, t)
y(x, 0) = y(x, τ)
yx(0, t) = 0

yx(1, t) + α y(1, t) = αe1(t).

(2.8)

3. Performance of the (τ, 1)-receding horizon method. We tested this
(τ, 1)-receding horizon method by a known test problem due to Schittkowski [20].
Here, the following data were given:

T = 1.58, yd(x) = 0.5 (1− x2), y0(x) = 0, ν = 0.001, ua = −1, ub = 1, α = 1.

To apply the method, the problem must be discretized. The intervals (0, 1) and
(0, T ) were splitted by uniform grids into nx = 50 and nt = 100 subintervals, and the
control u was approximated by n = 100 basis functions ej . The heat equation (1.1)
was solved by a fully implicit finite difference method.

First, we recall the results for an exact minimization of the discretized problem,
i.e. a solution of the associated finite-dimensional quadratic programming problem.
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They were obtained by the Bertsekas projection method and application of a CG
method to the associated unconstrained subproblems, see [1] for details.

The optimal control u(t) and a comparison of the desired temperature profile yd

with the optimal final temperature ȳ(x, T ) are presented in Figure 3.1. The computed
optimal control has 3 switching points separating two interior and two boundary arcs,
and the computed optimal value is

J(u∗) = 0.000686.

We refer also to associated numerical tests in Eppler and Tröltzsch [8]. Moreover, we
should mention here the interesting fact that, up to now, it is an open question, if this
reflects the true switching structure of the optimal control for the infinite-dimensional
problem. In particular, it is not yet proven that the number of switching points is
finite.
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Fig. 3.1. Optimal control u and optimal final state y(·, T )

Let us now report on the application of the (τ, 1)-receding horizon method to this
example, based on the same discretization. The computed suboptimal functions are
plotted in the Figures 3.2 and the suboptimal value for the objective was

J(ū(τ,1)) = 0.03645.
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Fig. 3.2. (τ, 1)-receding horizon: Suboptimal control ū and associated final state ȳ(·, T )

We observe a striking difference to the optimal data. Clearly, this is due to the
fact that the time horizon τ is very short in comparison with [0, T ], where an exact
optimization would be performed. However, in [22] it was observed that the method
computed excellent values extremely close to the optimum.
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Here, the optimal control has a very particular structure. In the first part of the
time interval [0, T ], the optimal control inserts more energy than needed. Near time
T the control is equal to −1, so the extra energy is dissipated. The exact optimizer
recognizes that this is useful to fit yd well at the end of the control process. In
contrast, the suboptimal control strategy does not have this future perspective. It
acts too cautiously and supplies only a moderate temperature.

The mathematical explanation came by the proof of the fixed point theorem
4.3, which can be found in the next section. The fixed point predicted by (2.7) is
u∗ = ū(y∗) = 0.1094. This is what Figure 3.2 shows. The right hand figure shows
y(·, T ) ≈ u∗yf = 0.1094 · 1. We recall that yf ≡ 1 is given by (2.8).

Remark 3.1. Considering tracking type functionals, i.e.

J(y, u) =
1

2

∫ T

0

∫ 1

0

(y(x, t) − yQ(x, t))2dxdt +
γ

2

∫ T

0

(u(t))2dt

with time-independent goal function, we end up with the same receding horizon
method, since the optimization problems to be solved in every time step are of the
same form as (Pj). Hence, the receding horizon method will converge to a fixed point
that might be far from the desired state.

4. Improved strategies.

4.1. Extended time horizon. As we have seen above, a lack of future per-
spective can be a decisive drawback of the (τ, 1)-receding horizon method. The time
horizon τ is too short. Choosing a larger horizon for the optimization should improve
the performance, cf. [5] and related articles for this strategy. Therefore, we next pro-
ceed as follows: Given an initial state y(x) := y0(x) we try to approach the desired
state yd(x) on the extended time interval [0, l τ ], where l ∈ N is given. The ansatz for
the control is

u(t) =

l
∑

i=1

uiei(t). (4.1)

We solve the optimal control problem

min J(u1, .., ul) =
1

2

1
∫

0

(y(x, l τ) − yd(x))2dx +
ν

2

l τ
∫

0

u(t)2dt (Pl)

subject to

yt(x, t) = yxx(x, t)
y(x, 0) = y0(x)
yx(0, t) = 0
yx(1, t) = α (u(t) − y(1, t))

(4.2)

on [0, l τ ], subject to the ansatz (4.1) for u(t) and to the constraints

ua ≤ ui ≤ ub,

i = 1, .., l. The optimization in (Pl) is performed exactly (of course, for a discretized
version of the heat equation). As a result, we obtain control coefficients û1,.., ûl and
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the state y(x, l τ) at the end of the extended horizon [0, l τ ]. Next, we put ūi := ûi,
i = 1, .., l, and define y0(x) := y(x, l τ) to be the new initial state for the shifted time
horizon [l τ, 2l τ ]. Then we perform the optimization on this interval. By autonomy in
time, this is equivalent to solving problem (Pl) on (0, l τ). Let us denote its solution by
û1,.., ûl again. The suboptimal controls on [l τ, 2l τ ] are now ūl+1 := û1, ..,ū2l = ûl.
Next we proceed to [2l τ, 3l τ ] etc. If k l τ > T , then only those controls are used
that belong to subintervals contained in [0, T ]. This approach on could denote as
(lτ, l)-receding horizon control method.

We will prove that a fixed point exists. For this reason, we proceed along the
lines of in Section 2. First we investigate Slτei. By definition (2.3), Slτei = y(·, lτ),
where y solves

yt(x, t) = yxx(x, t)
y(x, 0) = 0
yx(0, t) = 0

yx(1, t) + α y(1, t) = α ei(t).

(4.3)

Since ei(t) = 0 for t < (i−1)τ the initial condition can be replaced by y(x, (i−1)τ) =
0. Furthermore, we get y(·, iτ) = Sτe1 = e by ei(t) = e1(t − (i − 1)τ) and (2.3).
Moreover, it holds ei(t) = 0 for t > iτ , hence

Slτei = y(·, lτ) = D(l−i)τy(·, iτ) = D(l−i)τSτe1 = D(l−i)τe = Dl−i
τ e.

Putting this together we find

Slτu =

l
∑

i=1

ui Dl−i
τ e.

Let us denote by ū = (ū1, . . . , ūl) =: ū(y) the solution of (Pl). Now the method
assigns to an initial function y a new function ȳ by

ȳ = Dl
τy + Slτu = Dl

τy +

l
∑

i=1

ūiD
l−i
τ e (4.4)

Definition 4.1. The mapping y 7→ ȳ given by (4.4) we will denote by Φl, i.e.

Φl(y) = Dl
τy + Slτu = Dl

τy +

l
∑

i=1

ūiD
l−i
τ e.

We introduce a functional f : L2(0, 1) × R
l → R by

f(y, u) =
1

2
‖yd − Dl

τy −

l
∑

i=1

uiD
l−i
τ e‖2 +

ν

2
τ

l
∑

i=1

u2
i =

1

2
uT Hu + bT u + c,

where

H = (hij) hij = (Dl−i
τ e, Dl−j

τ e) + δijντ
b = (bi) bi = (Dl−i

τ e, Dl
τ y − yd)

c =
1

2
‖Dl

τ y − yd‖
2.
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Obviously, the matrix H is symmetric, and (H − ντI) is positive semidefinite, hence
H is positive definite. The necessary condition for ū to be solution of (Pl) is

(Hū + b)T (u − ū) ≥ 0 ∀u ∈ [ua, ub]
l. (4.5)

Lemma 4.2. The mapping Φl is a contraction in L2(0, 1).

Proof. Let y1, y2 ∈ L2(0, 1) be arbitrary functions and ūi = ū(yi). The variational
inequality (4.5) yields

(H ū1 + b)T (ū2 − ū1) ≥ 0
(H ū2 + b)T (ū1 − ū2) ≥ 0.

Adding these inequalities

−(ū1 − ū2)
T H(ū1 − ū2) +

l
∑

i=1

(

Dl−i
τ e, Dl

τ (y1 − y2)
)

· (ū2i − ū1i) ≥ 0

leads to

l
∑

i=1

(

Dl−i
τ e, Dl

τ (y1 − y2)
)

· (ū1i − ū2i) ≤ −(ū1 − ū2)
T H(ū1 − ū2) ≤ 0, (4.6)

since H is positive definite. Then

‖Φl (y1) − Φl (y2)‖
2 = ‖Dl

τ (y1 − y2) +
∑l

i=1(ū1i − ū2i)D
l−i
τ e‖2

= ‖Dl
τ (y1 − y2)‖

2 + 2
∑l

i=1(ū1i − ū2i)
(

Dl
τ (y1 − y2), D

l−i
τ e

)

+(ū1 − ū2)
T (H − ντI)(ū1 − ū2)

≤ ‖Dl
τ (y1 − y2)‖

2 − (ū1 − ū2)
T (H + ντI)(ū1 − ū2)

≤ ‖Dl
τ (y1 − y2)‖

2 ≤ (‖Dτ‖
2)l ‖(y1 − y2)‖

2

follows immediately from (4.6). This shows that Φl is a contraction because Dτ is a
contraction as well.

Theorem 4.3. The mapping Φl has unique fixed point y∗ with associated control

variable u∗. They satisfy

y∗ =

l
∑

i=1

u∗

i (y∗) (I − Dl
τ )−1 Dl−i

τ e, u∗ = ū(y∗) (4.7)

and

(H ′u∗ + b′)T (u − u∗) ≥ 0 ∀u ∈ [ua, ua]
l, (4.8)

where

H ′ = (h′

ij) h′

ij = ((I − Dl
τ )−1Dl−i

τ e, Dl−j
τ e) + δijντ

b′ = (b′j) b′j = −(Dl−i
τ e, yd).

(4.9)

Proof. Existence and uniqueness of y∗ follow from Lemma 4.2 and the Banach
fixed point theorem. (4.7) is a consequence of (4.4) and the fact that y∗ is the fixed
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point of Φl. (4.8) and (4.9) express the necessary condition (4.5) with respect to ū.
The formulas (4.9) can be obtained as follows:

(Hu∗ + b)i =
l

∑

j=1

hiju
∗

j + bi =
l

∑

j=1

hiju
∗

j + (Dl−i
τ e, Dl

τy∗ − yd)

=

l
∑

j=1

{(Dl−i
τ e, Dl−j

τ e) + δijντ}u∗

j + (Dl−i
τ e, Dl

τy∗) + b′i. (4.10)

In view of (4.7) we find

(Dl−i
τ e, Dl

τy∗) =
l

∑

j=1

(Dl−i
τ e, Dl

τ (I − Dl
τ )−1Dl−j

τ e)u∗

j .

Inserting this expression in (4.10),

(Hu∗ + b)i =
l

∑

j=1

{(Dl−i
τ e, [I + Dl

τ (I − Dl
τ )−1]Dl−j

τ e) + δijντ}u∗

j + b′i

=
l

∑

j=1

h′

iju
∗

j + b′i

is obtained. Here we applied

I + Dl
τ (I − Dl

τ )−1 = ((I − Dl
τ ) + Dl

τ )(I − Dl
τ )−1 = (I − Dl

τ )−1.

This method is not essentially better than the (τ, 1)-receding horizon method,
which is obtained for l = 1. For l = 4, the following suboptimal controls and final
states were computed (all discretization parameters as above):
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Fig. 4.1. (4τ, 4)-receding horizon: Suboptimal control ū and associated final state ȳ(·, T )

The suboptimal value of the objective is

J(ū(4τ,4)) = 0.01878.

In this case, any computed (4τ, 4)-receding horizon control has 4 components. This
explains the left hand side picture of Fig. 4.1. Notice that a new horizon begins
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repeatedly after 4 time steps. The fixed point vector u∗, calculated by (4.7) and
(4.8), is u∗ = (1.0, 1.0,−0.1483,−1.0). The associated y∗ (dashed) and the final state
ȳ(·, T ) (solid line) are presented in the right hand Fig. 4.1. In a sense, on each short
horizon the method reflects the long time behaviour shown in the left hand side Fig
3.1.

In (4.7), the functions yf,i = (I − Dτ )−1Dl−i
τ e were computed by approximating

the Neumann series. The expansion was truncated after ‖Dk
τ (Dl−i

τ e)‖ was sufficiently
small. The matrix H ′ is symmetric since Dτ is self-adjoint. However, the symmetry
can be destroyed due to numerical errors in the discretized form of (4.9). To make
H ′ symmetric, in the numerical approximation its elements were computed by

h′

ij = ((I − Dl
τ )−

1

2 Dl−i
τ e, (I − Dl

τ )−
1

2 Dl−j
τ e) + δijντ.

This is justified by (Dτ )1/2 = Dτ/2 and ‖Dτ/2‖ < 1. Therefore, the power series for

(I − Dl
τ )−1/2 converges.

4.2. (lτ, 1)-receding horizon technique. The extension of the time horizon
discussed in the last subsection improves the performance of the (τ, 1)-receding horizon
method. However, the larger the time horizon is, the more control values are fixed in
one step, no matter what happens in the future intervals. In a well-known way, this
drawback can be avoided as follows:

Again, the length of the time horizon is taken as l τ , i.e. the horizon includes l
time steps. Given an initial state y0 = y0(x), we try to approach the desired final
state yd on [0, l τ ] by controls u(t) having the form (4.1). Again, we solve the optimal
control problem (Pl) to obtain control coefficients û1, . . . , ûl. By (4.1), they define a
control û(t) that is optimal for (Pl). In contrast to the preceding subsection, we do
not use all of û(t) as part of a suboptimal control ū(t) for (P ). We only select the first
part of û(t) that is defined on [0, τ ]. The remaining part, defined on [τ, l τ ], is ignored.
Thus we set ū1 := û1. We compute y1(x) = y(x, τ) as the next initial state and repeat
the optimization step on the shifted time interval [τ, (l+1) τ ]. Thanks to autonomy in
time, this is equivalent to solving (Pl) on [0, l τ ] subject to y0(x) := y1(x). Once again,
we adopt only the first part of the associated optimal control, i.e. we put ū2 := û1,
while the other values û2, . . . , ûl are ignored.

In (P ), the interval of time is [0, T ] and τ = T/n. After n − l steps, the (τ, l)-
receding horizon method has reached the subinterval [(n − l) τ, T ]. Then the whole
function û(t) is taken to define the last part of the suboptimal ū(t), i.e. we define
ūn−l+1 := û1, . . . , ūn := ûl.

For l = 1, this method recovers to the (τ, 1)-receding horizon method. If l =
2, then it already behaves much better. We have the impression that the method
converges to a fixed point as well. The gain of performance is partly connected with
the optimal solution on the last interval of time [(n − l) τ, T ], which is the most
important one, due to the smoothing property of the heat equation.

We tested our example for l = 4, n = nt = 100, nx = 50. The results are
presented in Fig 4.2. The suboptimal value of the objective is

J(ū(4τ,1)) = 0.00605.
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Fig. 4.2. (4τ, 1)-receding horizon: Suboptimal control ū and associated final state ȳ(·, T )

5. Improved receding horizon method. So far, we have understood the re-
sult of Theorem 4.3 as a negative one explaining the bad performance of the (lτ, l)-
receding horizon method. However, we can exploit it to set up a new and – as we
shall see – much better technique.

We have mentioned why the method (lτ, l)-receding horizon control might have
difficulties to approach the desired final state yd. According to Theorem 4.3, it drives
the state function y to the fixed point yf = c (I − Dτ )−1 e, i.e. to a multiple of
(I − Dτ )−1 e. This function yf is not the optimum in the class of all possible fixed
point states. So we have the freedom to choose the best multiple.

Another aspect is the cause for the better results of the (lτ, 1)-receding horizon
method. These are, to a large extent, connected with the optimal solution on the last
time interval [(n − l) τ, T ].

Now we will combine these two observations and introduce a two-components
algorithm. The first one of this method is of (τ, 1)-receding horizon type. However,
the desired function yd is changed to ŷd = c · yf for a constant c which is at our
disposal. Then there is a good chance to achieve this goal by the (τ, 1)-receding
horizon method. Proceeding in this way, we find the control u on the time interval
[0, (n − l) τ ]. The remaining control variables will be the result of optimization on
[(n − l) τ, T ].

How should ŷd be defined, i.e., how should the unknown constant c be selected?
Suppose we are able to steer the initial distribution y0 into ŷd exactly after n− l steps
of the (τ, 1)-receding horizon method. The last step would be the solution of

min
1

2
‖yd − c · Dl

τyf −

l
∑

i=1

uiD
l−i
τ e‖2 +

ν

2
τ

l
∑

i=1

u2
i (5.1)

starting from ŷd = c · yf subject to ua ≤ ui ≤ ub, i = 1 . . . l. The constant c is not
fixed yet. Therefore, c can be the subject of the optimization (5.1) with respect to
the constraints ua ≤ c ≤ ub. Putting this together we get the following algorithm:

1. Determine yf according to (2.8).
2. Solve (5.1) subject to ua ≤ ui ≤ ub, i = 1 . . . l, ua ≤ c ≤ ub, and get

ĉ, û1, . . . , ûl .
3. Compute u1, . . . , un−l and y(·, (n−l) τ) by the (τ, 1)-receding horizon method

described in Section 2 with desired state ŷd = ĉ yf .
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4. Minimize the objective functional

1

2
‖yd − Dl

τy(·, (n − l) τ) −
l

∑

i=1

uiD
l−i
τ e‖2 +

ν

2
τ

l
∑

i=1

u2
i

subject to ua ≤ ui ≤ ub, i = 1 . . . l, to obtain the solution ū1, . . . , ūl. Set
un−l+1 = ū1, . . . , un = ūl.

This hybrid technique behaves essentially better than the former ones. With the
same test parameters as above we got for l = 4

J(ūimp) = 0.00265.

The constant ĉ was computed as ĉ = 0.41356. This is shown by Fig. 5.1.
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Fig. 5.1. Improved method: Suboptimal control ū and associated final state ȳ(·, T )

This strategy bears certain resemblance to the Bellman optimality principle. In
the Bellman principle, starting from all possible initial states ŷd, the optimal control
u(ŷd) would be computed on [(n − l) τ, T ]. Next, the optimization is performed on
[0, (n − l) τ ] while the resulting function y((n − l)τ) is inserted as starting value ŷd

for [(n− l) τ, T ]. In the hybrid method, the optimization on [(n− l) τ, T ] is restricted
to the set {ŷd : ŷd = cyf , c ∈ [ua, ub]}. Moreover, the optimal ŷd is fixed, and the
control on [0, (n − l) τ ] is computed by the suboptimal way by the (τ, 1)-receding
horizon method to approach yd.

Remark 5.1. The result of step 2 is the state ŷd = ĉ yf that should be approxi-
mated by the (τ, 1)-receding horizon method.

Remark 5.2. Step 4 may be superfluous. If the state ŷd is already well ap-
proximated by the (τ, 1)-receding horizon method in step 3, then we can skip the
minimization in step 4. In this case, we take the variables û1, . . . , ûl to define the last
control components: un−l+1 = û1, . . . , un = ûl. This case occurs if the final time T
is sufficiently large. Then the convergence theorem 4.3 gives the convergence of the
series {ūi} towards u∗ ≈ ĉ.

6. Application to a two-dimensional problem. The suboptimal control
methods were applied in the former sections to the one-dimensional case. It is obvi-
ous that they can be extented to higher dimensions in a straightforward way. Our
numerical tests were encouraging. The performance for optimal boundary control of
the 2d heat equation was comparable to the 1d case. To show this, let us consider
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the optimal control problem

min
u∈Uad

J(u) =
1

2
‖y(·, T ) − yd‖

2
L2(Ω) +

ν

2
‖u‖2

L2(Γc×(0,T ))

with respect to

yt(x, t) = ∆y(x, t) x ∈ Ω
y(x, 0) = y0(x) x ∈ Ω
∂ny(x, t) = 0 x ∈ Γ0

∂ny(x, t) = u(x, t) − y(x, t) x ∈ Γc, t ∈ [0, T ],

(6.1)

where ∂n denotes the derivative with respect to the outward normal at Γ = ∂Ω. In
the following, the domain Ω is the unit square (0, 1)2 with boundary ∂Ω = Γ0 ∪ Γc,
Σ = Γc × (0, T ). The control acts on the right edge Γc = {(1, y) : y ∈ (0, 1)} and is
required to be an element of Uad = {w ∈ L∞(Σ) : ua ≤ w(x, t) ≤ ub a.e. on Σ}.

We introduce the (τ, 1)-receding horizon method similar to the one-dimensional
case. However, the associated analysis is more technical. In particular, the application
of semigroup theory to problems with inhomogeneous boundary data requires the use
of Neumann boundary operators and weakly singular Bochner integral operators.
The presentation of this theory is beyond the scope of this note. We refer to the
forthcoming paper [23]. Therefore, we only report on our numerical tests that were
encouraging.

Similarly, one proves the contractivity of the associated mapping Φ. The essential
pre-requisite is the contractivity of the mapping Dτ in L2(Ω). This is due to the fact
that the Robin-boundary Γc has positive measure.

Consider the test example with given data

T = 2, yd(x) = 0.5 x1x2 + 0.25, y0(x) = 0, ν = 0.001, ua = −1, ub = 1.

The partial differential equation was discretized by finite differences on an equidistant
grid with ny1

× ny2
= 100 × 100 grid points. Similarly, the time axis was divided in

nt = 100 subintervals. However, the control function was discretized by a slightly
coarser grid with nux

= nut
= 50 grid points. The solution of the box-constrained

optimization problems to be solved in all tested methods was performed by the primal-
dual active set strategy, cf. [17], while a conjugate gradient algorithm was used to
cope with the free subproblems.

Figure 6.1 shows the optimal and the suboptimal control for this problem. The
suboptimal control was computed by the (τ, 1)-receding horizon method. Hence it
converges to a fixed point for repeated time steps. The objective values are of the
same order

J(u∗) = 0.00207, J(ū(τ,1)) = 0.00301.

Moreover, we applied the improved methods of Section 4 and 5. They exhibit
the same performance as in the one-dimensional case. For the time horizon of length
l = 4, we computed the following objective values:

J(ū(4τ,1)) = 0.00274, J(ūimp) = 0.00271,

where ’imp’ stands for the improved receding horizon method of section 5.
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Fig. 6.1. Optimal u∗ and (τ, 1)-suboptimal control ū
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Fig. 6.2. Suboptimal control: (4τ, 1)-receding horizon (left) and improved receding horizon (right)

As in the one-dimensional case, the hybrid method gives the best results. But in
this example the differences between the values of the objective for the optimal control
and the suboptimal approaches are smaller than for the one-dimensional example.

For the extension to nonlinear boundary conditions we refer to the forthcoming
paper [23].
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