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1. Infroduction

Within the recent years the investigation of differentiable but non-convex control
problems for parakolic partial differential equations has been attracting growing
interest. This is reflected by a huge number of papers on this subject, we refer only
to AamMeD and Tro (1], HorrMaNN and KraBs [4] or TROLTZSCH [10] and the refer-
ences cited therein. Whereas in the convex differentiable case the first order
necessary conditions are also sufficient, the presence of non-convex terms requires

i the consideration of higher order conditions. The main way to derive such condi-
tions, in particular of order two, is known from many publications on mathemati-
cal programming problems in BANACH spaces. We mention, for instance, Do Van
Luv [2], GorLaw {3], Iorre [5], TorFe and TikmoMIROV [6], MAURER [8] and
Mavrer and Zowk [9].

The application of the general theory to concrete problems is, however, connect-
ed with a variety of difficulties. Within the framework of optimal control of
ordinary differential equations this has been adressed by MAvRER and ZowE [9].

In particular, the correct choice of function spaces and suitable norms is a
specific feature for these investigations. This is known for ordinary differential
equations and turns out to be even harder for partial differential equations. Here
already the proof of necessary conditions is connected with difficulties, which
inerease in the investigation of sufficient conditions.

In this paper, we shall discuss the analysis of second order conditions for control
problems governed by weakly singular HAMMERSTEIN integral equations aiming
to apply them to semilinear parabolic boundary control problems.
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We consider the problem to minimize

T ) =4 7= (SN, 0) )+ [ flat0) w0 1) (1)
subject to :

z(t)=c(t) + [ Kt s) gla(s), u(s), s)ds on [0, T] (1.2)

ul‘:‘u(t)é?fg ae on [0,T]. (1.3)

Here we are given: A real HILBERT space H, g¢H; @ H—+R, two times conti-
nuously FrEcHET-differentiable; real constants wy<ug, T=0; N:L_.(0, T)x
w L0, T)~L_(0, T); 8 : Ly(0, T') ~ H, linear and continuous; and continuous fune-
tions f, g : RXRX[0, T]~R, ¢: [0, TR, k: D=[0, T1X[0, TI{G, 5} | s=t}-R.
We assume that :

(A1) 1k, ) =c(t—s)™ on D,
where ¢€R and «€(0, 1). Thus k is weakly singular at t=s.

(A2) f and g have all first and second order derivatives with respect to x and
. f, g, and these derivatives are continuous on RX R with respect to

and u ( fixed) and measurable with respect to (2, % fixed) (CARATHEODORY con-
dition) as well as bounded on bounded subsets of R X R %[0, T']. N stands for the
NEMYTSKI operator

N 2 (2(t), w(t)) ~g(x(2), uld), 2) -
(A2) ensures N to be a continuous mapping from L_x L. to L., having conti-
nuous first and second order FrEcHET-derivatives.

Throughout the paper, we shall freely use the following notation: £(X, ¥):
space of linear continuous operators 4 from X to Y: X*: dual space to X; A*:
adjoint operator to A€ (X, ¥); (, -): pairing; (, -): inner product of H; “-H:
L.norm, |lz: Lemorm. In an arbitrary BaNacH-space we use the _not.ation
B(z)={z| |z —=|| <&}; T"(x), T"(x): first and second order FB;E:CHE'J?-derlvatlve of
7. X - Y. If T is a mapping from X x U into Z, then its derivative is comp.osed of
partial derivatives. We denote them by Ty, Tu, 15z, Tou, and T,m,‘ respecmvelj-r.

Tn (1.1—3) u(f) is the control, we take u€ U=L.(0, T). Each contmuogs SOllllL]OH
(2} of (1.2) is said to be a state corresponding to u(f). The existence of g, implies the
uniqueness of the corresponding state, provided that it exists. We take X = clo, T.
Then K,

13
K (z(t), wlt)) e(®) + Uf k2, s) g(z(s), u(s), s) ds

is an operator from X X U into X with continuous first and second order F-deriva-
tives (note that the integral operator is linear and maps Ly(0, T inte C[0, T'] for

p=(1-a)) |
After setting Usa={ucU | wm =wu(t) =us} the control problem admits the form
J(z, wy=min! z=K(x, ), %EUs- (1.4)
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We shall consider locally optimal controls wo(t), i.e. controls satisfying J(z, u) =
=J(xo, wp) for all {x, u) with x=K(x, u), (x, u)¢ B2y, u0), u€ Uzq and certain
&= 0, where 2y is the state corresponding to wu,.

2. Necessary Optimality Conditions for (1.4)

In this section we prove optimality conditions for problems given in the abstract
form (1.4). We should note that they are independent from the special background
(1.1-3) and remain valid for any problem of the type (1.4) satisfying the conditions
below. We begin with the first order necessary condition for a locally optimal u,
with corresponding state .
Let
Flx, w; y)=J(x, u)+{y, v — K(x, u))

denote the Lacraxce function, where (-, -} is the sealar product in Ly(0, T'). In the
sequel we shall denote by Kz, Ku, J5, Ju. Fz, F, the corresponding FrEcHET deri-
vatives of K, J and F at the optimal pair (xo, ug). It follows from the special form
of K and F that these derivatives are not only linear and continuous on X and U.
We can extend them continuously to X =0 =L(0, T').

Using the same notation for these extensions we can therefore assume K. ¢ £(X),
K.c (X, U), F.cX*, F,cU". Moreover, the theory of VorLrergra integral equa-
tions yields the existence of (I —K;) 1€ 8(X) as well as (I — K,) 1€ &(X) {cf. the
remarks in Section 3).

All these properties, which are fulfilled in our concrete situation, must be as-
sumed in the next theorems, if we regard (1.4) without the background (1.1)—(1.3).

Theorem 1: Let wo be locally optimal with corresponding optimal state xg. Then
there is @ LAGRANGE multiplier yc X~ such that

2=0, (Fy,u—ug)=0 uclUgy. (2.1)

Proof: At first we regard (1.4) in the “original” space X X U. The existence of
(I~ K;)1 in £(X) is a regularity condition, which ensures that the variational
inequality

Iz (@ — o) + Jy (% —20) =0
holds for all (z, u)€ X X U satisfying the linearized equation

w—my=K; (x~xo) + Ky (u—up), u€Ugq.
Taking advantage of the concrete integral representation of Jy€ X*, J,c U* we
recognize that they can be extended continuously to Lx(0, T), i.e., we can assume
Joe X, JueU*. Now, regarding z and » formally as elements of X and U, the

solution set for the linearized equation remains unchanged (u¢€ Uzgc U=ac X).
Inserting

x—wp= (I —Kz) K, (u—uy)

46*
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into the variational inequality and introducing
y=—(I-E&* e

we obtain

y=—Jz+ Ky (2:2)
(Ju—Kgy, u—ug)=0 (2.3)

(with K5 £(X*), Kje ®(X*, U*)). Obviously (2.2-3) are identical with (2.1). ®

Theorem 2: Suppose that wy i & Tocally optimal control with corresponding state
T, Then

(g, w03 y) [, w] =0 (2.4)
for all w=(h, v) satisfying

h=Kgh+EKuv (2.5)

(Fu, v)=0, (2.6)

v=1 (u—ug), A=0, u¢€ Uaa -

Proof: Let we Ugg, A=0be given arbitrarily but fixed and put u, =up+& " A(u—
—ug)=up+e - v, where 0 <& <3-1, Then u,¢ Uqq. By known arguments relying on
the implicit function theorem (cf. [6] or [9]) we obtain from the existence of
(I—-EKg)t:Ina neighbourhood of zo there is exactly one solution «, of ©, = K(z,, u,)
and

x, =29 +eh+7(s)
where [r(e)] - 10, e=~0 and
h=Kzh+ Ky .
Thus
0 = (0, 42) —J (@0, o) = Fx,, %, ) — Flao, w03 9)
=1/2F"" (x0, o ¥) [(eh + (e}, &v), (h +7(e), £v)}
+0(e%)
(note that Fz=0, (Fy, v)=0)
—1/262F" (20, wo; ) [(B +7(e)e, v), (b +7(e)/e, 2]
+o(e?) .
After dividing by &2 and & ~0 we arrive at (2.4). ®
n order to prove practicable second order sufficiency conditions we are faced
with the so-called ‘g wo-norm-discrepancy’’, which in another sense also occured in
Theorem 1: The norm used to achieve differentiability (in our case the L_morm
]I} is not suitable to verify sufficient second order conditions. ITn our problem the
Lg-norm |-}z would work. Therefore, we assume slong the lines of MAURER.
(A3} Denote by ri{z, ) the first order remainder term of the TAYLOR expansion
sor K(w, u) {n | XxU~X) and analogously by 7z the second order re-
mainder term for F(z, u; y) (ra | XxU~R).
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Assume

() frala)] - e3P0, Im@lizfo ~0, if 2] 0 and

(i1) ].F”(_{Eo, uo; ¥) (21, 22]] = ¢ |12 ||=2fe-

I;Ll (i), .(11} z=(x, ) and the norm |jzlls = max (Jjls, [ju/}2) were used.
At next we can prove the second order sufficiency condition of

S(LE;?GI'E;H 3 Assume that (A3) is fulfilled. If the pair (o, ug) is feasible for (1.4)
isfies the first order necessary condition (2.2—3) and there exists 5=0 such tha-t ,

F'(xg, ug; %) [w, w]z= 2
03 ) [w, w] = [l (2.7)

for all w=(h, v) with v=u —up, w€ Uy and

h=Kgh+Kw, 2.9)

then ug s a locally optimal control.

(IPr)olnff: \7\7_::)15}1?]1 write for short F"[z, z]:=F""(zo, uo; ) [2, 2]. Suppose that
r, ) is feasible for (1.4) and max (|lz — - here ¢ i sufficd .
e et e NO-‘E o, |lw—mwugl])<e, where ¢ is sufficiently

J{x, u)—J(wg, uo)=Fx, u; y)— Flao, 2o; ¥)

= (Fg, 2 —x0) + (Fu, w—uoy+ 1/2F" (20, %t0; ) [2, 2]+ 72(2)

=1/2F"" (@, uos y) [2. 2] +72(2)

by (2.2-3). We have x—ay=K; (x—29) + K, (4 —at9) +71(z), hence

x—xg-_:h -{-1‘1(z) s
where

h=K K _ N _ i
Therefore el filz)=(I— Kg)1 ri(z) .

z=(h+71, v)=w+7, F—E ) BHE
F'lz, 2]=F"[w, w]+2F"[w, #1]+ F"'[#1, #1]

=8 |wlff — 2¢ [l [Falle— ¢ 1713
(by (A3), (ii)). Further, from |w]j; =|z—#13 = (lz]lz — [If1]l2)2
F”[Z, Z:E =z ‘2 {5_ 28 Mz_z ( 1 17 dl2 Y 11731l ||i='li|% _}6
Il i 20\, ) T, ¢ ) =2

is obtained from (A3), (i) and (2.7) i i ici
i ; 2.7), provided that ¢ is suff i
ing our estimation we find ey smell. Contine:

& "9 /] o9
T, 0) I, wa) =12 5+ ) =5 IR

for ¢ sufficiently small. Therefore u, is locally optimal. ®

Remark: Suppose th —Kz) i i 4
¥l Then ppose that (I—Kz)-1 K, is continuous from U to X in the norm

F*' (@, ;o) [w, w]=6 - ||| (2.9)
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is sufficient for (2.7). (We have [[&lls = |[(I - Kz) Kyfl - [Plle =¢ - [v]}2, hence
max (|42, |[v2) = max (¢ [vlle, [oflz) =max (1, ¢) [la, thus [flzz=max (1, )2 - foeiz
implying (2.7)). In the applications (2.9) is often easier to verify than (2.7).

3. Optimality Conditions for (1.1-3)

Tn this section we shall apply the resultsof the preceding section to our main prob-

lem (1.1—3). Suppose that ug(f) is a locally optimal control with corresponding

state 2o(f). In accordance with our previous notation we shall write fz(f) =f=(zo(t),

ug(t), 1), galt) =ga{zo(t). 1o(t), ¢) and use o similar notation for the other derivati-
_ves. I — K is given by

2(t) ~(¢) duf t ke, 3) gals) x(s) ds .

K, is an operator of potential type, thus it is a continuous mapping in L.(0, T') as
well as in Lz(0, T) (cf. KrasNOSELSKI 2.0. [7, § 8]). Moreover, for n sufficiently
large, (Kg)* is a contraction in X =L.(0, T) and X = Ly(0, T). Thus the range of
{(I—Kj)is L_(0, T) and Ls(0, T), respectively, by a version of the BawacH fixed
point theorem. Now the continuity of (I—K;)!in X and X follows from the
BanacH theorem on the inverse operator. This justifies the remarks before Theo-
rem 1, and we obtain the existence of a LAGRANGE multiplier y(t) from
X#=Ls(0, T). The Lacrancns function is

444 t
Fla,w; y)=J(@ w)+ [ ylt) [x(t)— [ kit 8) gl=(s), u(s), 5) d8] dt
1] 0

T T
=J+f (y(n 2(t) —glatt), u(t), 1) [ ks, 1) (o) ds) dt.  (3.1)
i £
By means of the chain rule,
(TL, By={D"(po), SNy(z0, uo} h)= (NE8*®' (pa), by
(T3, By=(N38*®'(po), h) ,
where po=~S8N(xo, %) —¢- Hence

Julty=fult) +guld) (8P (po)) () ,
Jalt) =fa(t) +g2(0) (8°D' (o)) &),

the adjoint equation (2.2) is

T
y{t) = —fa(t) +ga(0) {4(8@’(?03) O+ [ ks 0 3(o) dS‘ , (3-4)
and (2.3) reads
T T
f [fu(t) +gult) [(S"@’(po)) (t)—tf k(s, 1) y(s) ds]] (3.3)
1]

- (ult) —uo(t)) dE=0
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for all wy =u(l) =ue. (3.2—3) are the first order necessary conditions for our problem.
In order to establish the second order conditions we need several second order
derivatives. We illustrate the computations for J1=® (SN(u, v) —¢), the most
“difficult”” part of J.

Tt is known that for ¥: X — R the derivative ¥ (xo) [h1, k2] can be determined

as follows: Define p(x)=_¥"(x), k). Then ¥"'(xy) can be obtained just by differen-
tiating ().

V") [Ra, he] = (p"(z0), hz) -
Therefore, in order to obtain JL,, we introduce

q)(’w) =<J;{Sﬁo, ’l.t.), h1>2(@'(SN(:E0, u.] —q), SNH(:L‘Q, u) h]_) r
Now

{g'(ua), ha)={D"{po) SNyhs, SN k1)
+{D'(po), SNuu[la, he]) = Tu[P1, h2]

(derivatives of N taken at (%o, ug)). Note that @' : H—H, @ : H —~2(H). Hence
oo, o) [h1, kel =(N 38 D" (po) SNyha, k) +(S*D' (o), Nuulhy, hel)
a0, wa) (b, he] =(N38° D" (po) SNzhs, h) +(8*P"(po), Naulha, kel
Trulo, o) [F, ha]=(N38° D" (po) SNuhs, bn)+(S*®'(po), Naulhy ha})

=Jy(h, he)

(@' is self adjoint and Ny = Nyz). The derivative Ny, is
(Nuulha, hal) ()= guult) ha(2) hal?) ,

and analogous expressions hold for Nzu, Ny

Similarly, the other derivatives can be obtained. In this way, the second order
condition (2.4) amounts to

Q:, v)=QUz, v) +Q%(x, v) =0 (3.4)
for all x(t), »(t) satisfying v(t) =2 (u(t) —uol(t)), =0, uy Su(f) =us,

¢
x{t):df k(t, s) (gz(s) 2(s) +guls) v(s)) ds (3.5)

jFu(f)(%(t)—uo(t)) dt=0, (8.6)
where F,(t) is the expression {.. .} in (3.3),
Q! =J%Ez(n:, &)+ 2T, (2. v) + L, (v, v)
QZZj {[fzalt) = gau(t) Y ()] 22(2) +2 [foult) — gault) ¥ (2)] 2(2) 0(2)
+[funl) — gualt) Y ()] v2(2)} d2

and

7
Y()= f k(s, ) y(s) ds .
¢
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(3.4—6) combined with the first order conditions are the second order necessary
conditions for u(t). It should be mentioned that the orthogonality relation (3.6) is
equivalent to

ug(), Fulty=0
ult) ={a.rbitrary, Fy(f)=0 &)
as Fu(t) (u(t) —uo(t)) =0 according to (3.3). Thus the second order condition gives
additional information for those #, where Fy(f) = 0. These are exactly those points,
where the first order condition (3.3) contains no information, since (3.3) yields
wuoll) =y, if Fylt) =0 and wolf) =us, if Fy(t)<0.
Some additional care is needed to verify the assumptions of second order condi-
tions. According to the coercivity condition (2.9) we require

T
Qlx, v)=d [ o2(t) dt (3.8)
]

for all (x(t), v(t)) satisfying the linearized equation (8.5). This is a natural condition,
and it remains to check Assumption (A3).

Theorem 4: Suppose that the LAGRANGE multiplier y belongs to L_(0, T). If the
feasible pair (wo(t), uo(t)) satisfies the first order necessary condition (3.2—3) and the
sufficiency condition (3.8) holds for all (x(1), v(t)) solving (3.5), then wuo(t) is a locally
optimal control.

Proof: This is a direct consequence of Theorem 3 and the discussion above
provided that (A3) holds. Aiming to shorten our presentation we confine ourselves
to the proof of (i)

[r@N/lizllz =0, if |2} -0

and of (ii). At first we show (i): The remainder term r, is

(m(2)) &) =(ri(k, ©)) ()= fk 8) [(ga(o(s) +B(s) hls), uols) + H(s) v(s), 5)
- g={wo(s), wols), 8)) A(s)
+(gulzols) +B(8) hls)), up(s) +&(s) v(s), )
—gu(20(s), uols), 8) v(s)] ds
(3
= Uf k(t, 8) [(93(8) — g(8)) h(3) +(92(8) — guls)) v(s)] ds

where 0=0()=1 can be assumed to be measurable (cf. KRASNOSELSKII a. 0. [7,
§ 20]). From the continuity properties of g,, g, we get

max (|[A], [[v]]) ~0=>max (|lgz — gal, llgz —gull) ~ 0
Hence, by the continuity of K, in Ls(0, T)

lIratwllle=e (lgz— gall elia + llgis — g 1]z
=0 max ([lgz —all, llgis — gull) max (|Jfz, o]z}
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Now (3.9) and fjuil=max (jjAlle, ||2i2) vields‘the desired result. The validity of
(i) is due to the fact that the ma.ppmg

(hl ]!2 ) f y

is continuous in La(0, T) % Lg(l}, T, provided that (1), «(¢) belong to L_(0, 7). m

E(t. 5) w(s) hi(s) ha(s) dsdt

Remark: It follows from (3.2) that y(¢) belongs to L(0, T), if the same holds for
(8*@'(pa)) (B).

4. Application to Parabolic Boundary Controel Problems
In order to illustrate the application of the results of Section 3 to the control of

parabolic differential equations we regard a boundary-control problem for the
one-dimensional heat equation:

Minimize
1 T
1/2 f[::(T, x)—gla)]? da + fuz(z) d (L.1)
0 0
subject to

zt.(ts 'E}zz.;.f(t- £) on (0, T] X (0, 1)

2(0, &) =0 on [0, 1] (4.2)
z,(8, 0)=0 ~on (0,7)

z,(t, 1)=g(=z(t. 1), w(t), t) on (0, 7], |uit) =1,

where v=0, T=0 and g€ L_[0, 1) are given, and g is defined as in Section 1. The
control u is regarded in the space L. (0, T), but we regard u formally as element of
Ls{0, T).
Aiming to relate this problem to (1.1-3) we introduce the GREEN’S function
Gl nt)=1+2 E cos (nné) cos (nan) exp (—nin2t) .
n=1

Then any classical solution z(Z, &) of (4.2) must satisfy the equation
¢
2t )= [ G (5 1,1—3) g(z(s, 1), uls), 8} ds . (4.3)
o
We regard (4.3) as the equation defining z({, £), and each continuous solution =
of (4.3) is said to be a generalized solution of (4.2). Now put =(¢)==z(, 1), k(t, s)=
=G (1,1,t—8), H=IL(0, 1), and 8 : Le(0, T)~H by

T
(Su) (&)= f@(g, 1, T—s) u(s)ds.

T
Then =(T, &)= [ G(& 1, T—s)g(a(s), u(s), s) ds=(SN(x, u)) (&), and (4.1-2)
1]
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admits the form
T

1/2 SN (@, w) gl +5 f w2(t) dt—min!
0

[
z(ty= [ k@, ) g(2(s), u(s), s) ds, —l=ul)=1, (4.4)
(1]

being a particular case of (1.1—3), where @(x)= 1/2”:5“}{, fl, w, ) =1/2p2. Tt is
known |G(1, 1, )| =c¢ - £ V%, hence (A1) holds with z=1/2.
Simple calculations yield

1
(8*2) (ﬁ)=0f G 1, T-9z(8)ds,

@' (x)=x, @"(xy=1.

Let now ug(f) with corresponding state xq(t) be locally optimal for (4.4), define
Zo(t, £) by (4.3) and put po(&) =2(T', &) —q(£).

As zq is continuous and ¢ is bounded and measurable, we have po€ L.(0, 1).
Therefore (S*po) (¢) is bounded and measurable, too.

Then by (3.2) the adjoint state y(¢) is obtained as

1 T
y(t) =galt) [—OfG(f, i T—f)Pu(E)d§+¢f G(1,1,8—1)y(s) ds} :

and (3.3) amounts to
T

f Do) +gutt) - {3 (wft) —wolt)) de=0

0
for all |u(f)] =1.

S*poe L.(0, T) implies that y€ L.(0, T'), hence Theorem 4 can later be applied.
This is the first order condition for ug(t).

Remark: This adjoint state y(£) is not suitable for numerical computations. It is
enstomary to put 7(¢)={...}, hence

1 T
B0)=~ [ G T—0po§) a2+ [ G L 1,s-0gale) JO) s, (45)
o
and the first order necessary condifion is changed to ‘
T
Bf [v2o(t) +gulf) F(O)] (lt) — uo(t)) dt =0 |u(t)| =1 . (4.6)

¥ is seen to be the trace at £=1 of the generalized solution of the adjoint parabolic
initial-boundary value problem —z,=z,., 2(T, &)= —po(§), =l 0)=0, 2, 1)=
= galt) 3(2). ,

As regards the second order condition, we must determine @(z, v). @'' =1 yields

T 1
Q. 1) =18 (Vaz-+ Noollhy + (Of G5, 1, T—1) pol8) ds)

. (9':1:2:(3) 22ty + 2?&%(‘) z(t) v(8) + Fuult) ”2{5)) de
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T
- éf Y(0) (g=2(8) 7%(t) + 2gu(t) 2(£) ¥{t)
T
+ Guult) #2(t)) dt + f v3(t) de,
0

T
where Y ()= f G(1, 1, s—t) y(s) ds. Hence
F
T
@, 0)=I1S oz + Nunlll— [ 510 ¢ (o) ).

T
[(@(0), v@), (2(6), »())] At +# [ o2() dt .

o
The second order necessary condition is

Qzx, v)=0

for all (z(2), v(t)) such that z(¢)=z(f, 1), where z is the generalized solution to

Zc = Zﬁ
(0, £)=0 (4.7)
2, 0)=0
(8, 1) =gz(t) =(Z, 1) +gul) v(¢) ,

where
0 if  vuglt) +gult) F(H +=0
Ault)—wo(®)), A=0, [|ul)=1 if vult) +gu(t) F()=0.
1
It should be remarked that in this sense ||S (Nx:t+N1,v)||§f= f z(T, z)2 dx.
)

w(t) ={

The second order sufficient condition is: The first order necessary condition is
fulfilled and

T
Qla, v) =+ [ o2(t) dt
0

for all z(f) ==(t, 1), v(f) satisfying (4.7)
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