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Abstract. A class of Lagrange-Newton-SQP methods is investigated for optimal control prob-
lems governed by semilinear parabolic initial- boundary value problems. Distributed and boundary
controls are given, restricted by pointwise upper and lower bounds. The convergence of the method
is discussed in appropriate Banach spaces. Based on a weak second order sufficient optimality con-
dition for the reference solution, local quadratic convergence is proved. The proof is based on the
theory of Newton methods for generalized equations in Banach spaces.
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1. Introduction. This paper is concerned with the numerical analysis of a Se-
quential Quadratic Programming Method for optimal control problems governed by
semilinear parabolic equations. We extend convergence results obtained in the au-
thor’s papers [31] and [32] for simplified cases. Here, we allow for distributed and
boundary control. Moreover, terminal, distributed, and boundary observation are
included in the objective functional. In contrast to the former papers, where a semi-
group approach was chosen to deal with the parabolic equations, the theory is now
presented in the framework of weak solutions relying on papers by Casas [7], Ray-
mond and Zidani [28], and Schmidt [30]. We refer also to Heinkenschloss and Troltzsch
[15], where the convergence of an SQP method is proved for the optimal control of
a phase field model. Including first order sufficient optimality conditions in the con-
siderations, we are able to essentially weaken the second order sufficient optimality
conditions needed to prove the convergence of the method. These sufficient conditions
tighten the gap to the associated necessary ones. However, the approach requires a
quite extensive analysis.

SQP methods for the optimal control of ODEs have already been the subject of many
papers. We refer, for instance, to the discussion of quadratic convergence and the
associated numerical examples by Alt [1], [2], Alt and Malanowski [5], [6], to the mesh
independence principle in Alt [3], and to the numerical application by Machielsen [27].
Moreover, we refer to the more extensive references therein. For a paper standing in
some sense between the control of ODEs and PDEs we refer to Alt, Sontag and
Troltzsch [4], who investigated the control of weakly singular Hammerstein integral
equations.

Following recent developments for ordinary differential equations, we adopt here the
relation between the SQP method and a generalized Newton method. This approach
makes the whole theory more transparent. We are able to apply known results on
the convergence of generalized Newton methods in Banach spaces assuming the so
called strong regularity at the optimal reference point. In this way, the convergence
analysis is shorter, and we are able to concentrate on specific questions arising from
the presence of partial differential equations.

* This research was partially supported by Deutsche Forschungsgemeinschaft, under Project num-
ber Tr 302/1-2.
t Fakultit fiir Mathematik, Technische Universitat Chemnitz, D-09107 Chemnitz, Germany
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Once the convergence of the Newton method is shown, we still need an extensive
analysis to make the theory complete. We have to ensure the strong regularity by
sufficient conditions and to show that the Newton steps can be performed by solving
linear-quadratic control problems (SQP-method). This interplay between the Newton
method and the SQP method is a specific feature, which cannot be derived from
general results in Banach spaces, since we have to discuss pointwise relations.

We should underline that this paper does not aim to discuss the numerical application
of the method. Any computation has to be connected with a discretization of the
problem. This gives rise to consider approximation errors, stability estimates, the
interplay between mesh adaption and precision (particularly delicate for PDEs) and
the numerical implementation. Besides the fact that some of these questions are still
unsolved, the presentation of the associated theory would go far beyond the scope of
one paper. We understand the analysis of our paper as a general line applicable to any
proof of convergence for these numerical methods. Some test examples close to this
paper were presented by Goldberg and Troltzsch [11], [12]. The fast convergence of
the SQP method is demonstrated there by examples in spatial domains of dimension
one and two relying on a fine discretization of the problems. Lagrange-Newton type
methods were also discussed for partial differential equations by Heinkenschloss and
Sachs [14], Tto and Kunisch [16], [17], Kelley and Sachs [19], [20], [21], Kupfer and
Sachs [23], Heinkenschloss [13], and Kunisch and Volkwein [22] who report in much
more detail on the numerical details needed for an effective implementation.

The paper is organized as follows. Section 2 is concerned with existence and unique-
ness of weak solutions for the equation of state. After stating the problem and as-
sociated necessary and sufficient optimality conditions in section 3, the generalized
Newton method is established in section 4. The strong stability of the generalized
equation 1s discussed in Section 5, while section 6 is concerned with performing the
Newton steps by SQP steps.

2. The equation of state. The dynamics of our control system is described by
the semilinear parabolic initial-boundary value problem

ye(z,t) + div (A(z) grad,y(x,t)) + d(z,t, y(z,t),v(x,1)) =0 in Q
(2.1) Ovy(x,t) + b(x,t, y(x,t),u(x,)) =0 on X
y(z,0) —yo(z) =0 on Q.

This system is considered in @ = € x (0,7"), where Q C RN(N > 2) is a bounded
domain and 7' > 0 a fixed time. By 8, the co-normal derivative dy/0va = —v T AVy
is denoted, where v is the outward normal on I'. The functions u, v denote boundary
and distributed control, ¥ =T x (0,7), T = 02, and yp is a fixed initial state function.
Following [7] and [28] we impose the following assumptions on the data:

(A1) T is of class C?“ for some a € (0,1]. The coefficients a;; of the matrix
A = (ajj)ij=1,. ~ belong to C1*(2), and there is my > 0 such that

(2.2) —ETA() € > mol¢]? VE€RY Vo

A(z) is (w.l.o.g.) symmetric .
(A2) The ”distributed” nonlinearity d = d(z,t,y,v) is defined on @ x R? and
satisfies the following Carathéodory type condition:
(i) For all (y,v) € R?, d(-,-,y,v) is Lebesgue measurable on Q.
(i1) For almost all (x,%) € Q, d(x,t,-,") is of class 02’1(TR2).
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The ”boundary” nonlinearity b = b(z,t,y,u) is defined on ¥ x R? and is
supposed to fulfill (i), (ii) with ¥ substituted for Q.

In our setting, the controls u, v will be uniformly bounded by a certain constant K.
(A3) The functions d, b fulfill the assumptions of boundedness
(1)
(2.3 d(a,t,0,) | < dic (a,1) V(a,1) € Q| < K,

where dg € LI(Q) and ¢ > % + 1. There is a number ¢ € R, and a
non-decreasing function 5 : R, — R, such that

(24) Co S dy(I,t,y, U) S 77(|y|)
for a.e. (z,t) €@, ally e R, all |v] < K.

(ii)

(25) b 1,0,0)] < bic(2,) V(1) € 5, u] < K
and
(26) (&) S by(l'ata Y, “’) S 77(|y|)

for a.e. (z,t) € X, all y € R, all |u| < K, where b € L7(X), r > N + 1.

The assumptions imply those supposed in [7], [28], since our controls are uniformly
bounded. The C?!-assumption on d,b is not necessary for the discussion of the
equation of state. We shall need it for the Lagrange-Newton method. Although the
discussion of existence and uniqueness for the nonlinear system (2.1) is not necessary
for our analysis we quote the following result from [7], [28]:

TuroOREM 2.1. Suppose that (A1)-(A3) are satisfied, yo € C(Q), v € L=(Q), u €
L%°(X). Then the system (2.1) admits a unique weak solution y € L?(0,1; H'(Q)) N
Cc(Q).

A(wgak solution of (2.1) is a function y of L?(0,T; H'(Q)) N C(Q) such that

— [y pr + (Vay) TA(2)Vap) dedt + [ d(z,t,y,v) p dedt+
Q

(2.7) @
+ [b(z,t,y,u) p dSdt — [ yo(z)p(z,0)dz =0
5 Q

holds for all p € Wzl’l(Q) satisfying p(z,7) = 0. In (2.7 we have assumed that
y € C(Q) ) to make the nonlinearities d, b well defined. Theorem 2.1 was shown
by a detailed discussion of regularity for an associated linear equation. This linear
version of Theorem 2.1 is more important for our analysis. In what follows, we
shall use the symbol A = div A grad y. Moreover, we need the space W(0,7) =
{y € L2(0,T; H'(Q))|y: € L?(0,T; H'(R)')}. Regard the linear initial-boundary value

problem

yw+tAy+ay=v on ()
(2.8) Oy+by=u on ¥
y(0) =yo on Q.
THEOREM 2.2. Suppose that a € L*=(Q), b € L=(X), ¢ > N/2+ 1, r > N + 1,
a(z,t) > co, b(z,t) > co a.e. on Q and X, respectively, and yo € C(Q). Then there is
a constant ¢; = ¢(ca, q, 7, mo, 2, T) not depending on a,b,v, u,yo such that

(29)  Iollzozim iy + e < @ (lvllzaq) + lullr + lvollem)
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holds for the weak solution of the linear system (2.8).

For the proof we refer to [7] or [28]. (2.9) yields a similar estimate for b-y. Regarding
the linear system (2.8) with right hand sides v — ay, u — by, yo, respectively, the
L%-theory of linear parabolic equations applies to derive

(2.10) lvllwo,ry < (Ivllza) + lull-z) + llvollcg)):

where ¢; depends also on | al|ze(q@), ||bl|Le(x). We shall work in the state space ¥ =
{lye W(0,T) |y + Ay € L4(Q), dyy € LP(X), y(0) € C(Q)} endowed with the norm
lylly = lyllwoz) + llye + AyllLag) + [|10vyllLr(x) + ||y(0)||c(ﬁ). Y is known to be

continuously embedded into C'(@). From (2.9), (2.10) we get

(2.11) lolly < é(llvllzae) + [lullr ) + llvollc @)

where ¢ depends on cq, ¢, 7, m0, Q, T ||al[ (@), ||b]| (). We shall furtheron need the
Hilbert space H = W (0,T) x L*(Q) x L*(X) equipped with the norm ||(y, v, u)||x =
(1ol . + 1ol gy + Il 72

3. Optimal control problem and SQP method. Let ¢ : Q xR — R, f :
Q xR* 5 R, and g : ¥ x R? - R be given functions specified below. Consider the
problem (P) to minimize

3.1) J(y,v,u) = | ez, ylz, T))de+ [ f(x,t,y,v)dedt + [ g(z,t,y,u)dSdt
[pr—

subject to the state-equation (2.1) and to the pointwise constraints on the control

(3.2) va < v(x,t) <wvp a.e on@Q

(3.3) u, < u(z,t) <up ae. on X,

where vq, Uy, Uq, up are given functions of L (@) and L*®°(X), respectively, such that
vg < vp, a.e. on @ and u, < up a.e. on X. The controls v and u belong to the sets of
admissible controls

Vaa = {v € L(Q) | v satisfies (3.2)}, Uyq = {u € L= (X) | u satisfies (3.3)}.

(P) is a non-convex programming problem, hence different local minima will possibly
occur. Numerical methods will deliver a local minimum close to their starting point.
Therefore, we do not restrict our investigations to global solutions of (P). We will
assume later that a fixed reference solution is given satisfying certain first and second
order optimality conditions (ensuring local optimality of the solution). For the same
reason, we shall not discuss the problem of existence of global (optimal) solutions for
(P).

In the next assumptions, D? will denote Hessian matrices of functions. The func-
tions ¢, f, and g are assumed to satisfy the following assumptions on smoothness and
growth:

(A4) For all z € Q, ¢(z,-) belongs to C%'(IR) with respect to y € R, while (-, y),
0y (,Y), @yy(-,y) are bounded and measurable on Q. There is a constant
cx > 0 such that

(3.4) loyy (2, 1) — @yy (T, 92)| < ek 1 — 2l
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holds for all y; € R such that |y;| < K, i=1,2.

For all (z,t) € Q, f(z,t,-,-) is of class C%'(R?) with respect to (y,v) € R?,
while f, fy, fo, fyy, fyo, and fy,, all depending on (-, -, y, v) are bounded and
measurable w.r. to (z,t) € Q. There is a constant fx > 0 such that

(35) ||D2f(xatay1avl) - sz(xatay%”?)” < fK (|y1 - y2| + |U1 - 1)2')

holds for all y;,v; satisfying |y;| < K, |vi] < K,i = 1,2 and almost all
(z,t) € Q. Here, || - || denotes any useful norm for 2 x 2-matrices.
The function g satisfies analogous assumptions on X X R%. In particular,

(3:6) [|D*g(x,t,y1,u1) — D*g(w,t, ya, us)|| < gr (|tn — yal + |ur — us))

holds for all y;, u; satisfying |y;| < K,
(z,t) € X.

;| < K,i = 1,2 and almost all

Let us recall the known standard first order necessary optimality system for a local
minimizer (y, v, u) of (P). The triplet (y, v, u) has to satisfy together with an adjoint
state p € W(0,T) the state system (2.1), the constraints v € V,q4, u € Uyq, the adjoint
equation

_pt+Ap+dy(xat)ij)p:fy(m)tayav) an
(3.7) Ovp +by(2,t,y,u) p=gy(z,t,y,v) onX
p(x,T) = y(z,y(z,T)) in Q,

and the variational inequalities

(3.8) /(f7J (z,t,y,v) —dy(z,t,y,v) - p)(z —v)dedt >0 Vz €& Vyaq
Q

(3.9) /(gu(m,t, y,u) — by(z,t,y,u) -p)(z —u)dSdt > 0 Vz € Uaq.
z

We introduce for convenience the Lagrange function L,
L(y,v,u;p) = J(y,v,u) — [{(ye + Ay + d(z,t, y, v)} p dedt
Q

(8.10) ({8, + b(x,1,y,v)) pdSdr
)

defined on YV x L=(Q) x L=®(X) x W(0,T). L is of class C*! w.r. to (y,v,u) in
Y x L®(Q) x L*(X). Moreover, we define the Hamilton functions

(311) HQ = HQ(x,t,y,p, U) = f(:v,t,y,v) —pd(z‘,t,y, U)
(312) HE = Hz(ﬂ?,t,y,p, u) =g(l’,t,y, U) —pb(a:,t,y,u),

containing the "nondifferential” parts of £. Then the relations (3.7) - (3.9) imply

(3.13) Ly(y,v,u;p)h =0 Yh e W(0,T) satisfying h(0) = 0,
(314) ‘C?)(ya v,u;p)(z - ’U) = /HI)Q(;E,t,y,p,U)(Z - ’U) dzdt > 0 Vze Vada
Q

(3.15)  Lu(y,v,u;p)(z —u) = /Hf(a:,t,y,p, u)(z—u)dSdt >0 Vz € Usg.
3
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Let us suppose once and for all that a fixed reference triplet (7,7,%) € Y x L=(Q) x
L™ (X) is given satisfying together with 7 € W (0,T) the optimality system. This
system is not sufficient for local optimality. Therefore, we shall assume some kind of
second order sufficient conditions. We have to consider them along with a first order
sufficient condition. Following Dontchev, Hager, Poore and Yang [10], the sets

(3.16) Qo) ={(z,t) € Q] Hl?(x,t,y(x,t),ﬁ(l‘,t),ﬁ(x,t))| > o}

(3.17) S(0) = {(x,1) € S| HF (2,1, 5(x, 1), u(x, 1), plx, 1)) | 2> o}

are defined for arbitrarily small but fixed ¢ > 0. Q(¢) and ¥(¢) contain the points,
where the control constraints are strongly active enough. Here we are able to avoid
second order sufficient conditions, since first order sufficiency applies. D?H? and
D?H?¥ denote the Hessian matrices of H9, H*¥ w.r. to (y,v) and (y, u) respectively,
taken at the reference point. For instance,

2 _ (HE (=,t,5(x, 1), 0(z,t),p(x,1)) HS (x,1,9(x,1),5(x,1), B(z, 1))
D*HC (1) = (Hvy(x,t,y(m,t),ﬁ(x,t),ﬁ(m,t)) Hﬁ)(m,t,y(m,t),ﬁ(x,t),p(m,t))) :

D2H?¥ is defined analogously. Moreover, we introduce a quadratic form B depending
on hy = (y;,v;,u;) €Y X L®(Q) x L=®(X), i=1,2, by

Blhi,ha] = [ @yy (e, 5z, T))yi (x, T)ya (2, T dx + [(y1,v1) D*H? (y2, v2) T dudt
3.18 Q Q
(319 + [(y1,u1) D*H*(yz, us) " dSdt.

b

The second order sufficient optimality condition is defined as follows:
(SSC) There are 6 > 0,0 > 0 such that

(3.19) Blh,h] > 4 - ||hlf%

holds for all A = (y,v,u) € W(0,T) x L?(Q) x L?(X), where v € V,q,v(z,t) =
0 on Q(0),u € Ugg,u = 0 on X(0), and y is the associated weak solution of
the linearized equation

(3.20) Ovy + by (7,u) y + bu(y, ) u =0

Next we introduce the SQP method to solve the problem (P) iteratively. Let us first
assume that the controls are unrestricted, that is Voq = L°(Q), Uaq = L (XZ). Then
the optimality system (2.1), (3.7), (3.8), (3.9) is a nonlinear system of equations for
the unknown functions v, p, y, u, which can be treated by the Newton method. In
each step of the method, a linear system of equations is to be solved. This linear
system is the optimality system of a linear-quadratic optimal control problem with-
out constraints on the controls, which can be solved instead of the linear system of
equations.

In the case of constraints on the controls, the optimality system is no longer a system
of equations. However, there is no difficulty to generalize the linear-quadratic control
problems by adding the control-constraints. This idea leads to the following itera-
tive method: Suppose that (y;, pi, vi,u;), i = 1,..,n, have already been determined.
Then (Yn41, Un41, Uny1) is computed by solving the following linear-quadratic optimal
control problem (QPy):



(QP,) Minimize

Jn(y, v, u) ngy d;L'-l—f(f;-y—l-fg-v)d:L‘dt—l-f(ggy-l—gZu_)det
Q P

Ly (00) = (D) + 3 [ =m0 = o) D209 (V7)o
Q Q

v — U,

+1 [(y =y, u— un) D2HE" (y - yn)det
>

U — Uy
(3.21)
subject to

Y+ Ay+d +dp (y—yn) +dy (v—v,) =0
(3.22) Ouy + 0" + by (y — yn) + b7 (u—un) =0

y(0) = wo

and to
(323) S Vadg u € Uad-

In this setting, the notation ¢} = ¢y (z,y.(2,T)), ¢y, = ¢y, (2, ya(2,T)), f} =

f;(mata yn(;v,t), vn(a:,t)), D*H@n" = DQH(y,v,U)(I;ta yn(:c,t), vn(;v,t),pn(m,t)) ete.,
was used. The associated adjoint state p, 41 is determined from

—Pt +Ap+ d; (p_pn) = HQ n + HQ n(Jn+l - yn) + Hﬁ;m(vn-kl - vn)
(3.24) p(1) = soy + Pyy (yn+1 yn)(T)
&/p-l' bg (p - pn) H "4 H (yn+1 - yn) + H:Eu’n(un+1 - un)

In this way, a sequence of quadratic optimization problems is to be solved, giving the
method the name Sequential Quadratic Programming (SQP-) method. The main aim
of this paper is to show that this process exhibits a local quadratic convergence. We
shall transform the optimality system into a generalized equation. Then we are able
to interprete the SQP method as a Newton method for a generalized equation. This
approach gives direct access to known results on the convergence of Newton methods.
In the analysis, a specific difficulty arises from the fact that (QP,) might be non-
convex. It therefore may have multiple local minima. We shall have to restrict the
control set to a sufficiently small neighbourhood around the reference solution.

4. Generalized equation and Newton method. To transform the optimality
system into a generalized equation, we re-formulate the variational inequalities (3.8)-
(3.9) as generalized equations, too. Therefore, we define the normal cones

{z€ L=(Q)]| [2(v —v)dadt <0 Vo € Vaa}, ifv € Vaa

4.1) N9 =
1) ) {@,ivaVad

{z e L>®(X)] u)dSdt <0 Vi €Uy}, ifuel,

(4.2) N¥(u) = f ‘ ‘
. 0, ifus Uaa.

Then (3.8), (3.9) read —HZ(y,p,v) € N9(v), —HZ(y,p,u) € N¥(u), or

(4.3) 0€ HS(y,p,v) + N(v)
0€ Hy(y,p,u) + N¥(u)
7



(HQ and HJ are Nemytskii operators defined analogously to Hg?, Hyz) The set-
valued mappings Ty : v = N%(v) from L®°(Q) to 2L7(Q) and Ty : u — NE(u) from
L2(X) to 27 (%) have closed graph.

We introduce now the space £ = (L®(Q) x L®(X) x C(Q))? x L=(Q) x L®(%)
with elements 7 = (eq,ex,0,7Q, 7=, Y0, v, Yu), endowed with the norm ||p||r =
leqllz=(@)+llesllz=(z)+lvellz>(@)+Islle =) +allc@ v lz= @) +vullLe(s),
and the space W = Y xY x L®(Q) x L (X) equipped with the norm ||(y, p, v, u)||w =
lylly + lIplly + |vllee) + [|u[lze(s). Moreover, define the set-valued mapping
T:W —2F by

T(w) = ({0},{0}, {0}, {0}, {0}, {0}, N9(v), N (u)),

and F': W — E by F(w) = (Fi(w), ..., Fs(w)), where
Fi(w) =y + Ay +d(y,v)
Fy(w) = 9,y + b(y, u)
Fs(w) = y(0) - vo
Fa(w) = —p1 + Ap— Hy(y,p,v)
Fs(w) = 0vp — H,'(y,p, u)
Fg(w) = p(T') — ¢y (y(T))
Fr(w) = HY (y,p,v)
Fy(w) = Hy (y,p, )

In the definition of E, the third component is vanishing, since it will correspond to the
initial condition y(0) — yo = 0, which is kept fixed in the generalized Newton method.
The optimality system is easily seen to be equivalent to the generalized equation

(4.5) 0. € F(w) +T(w)

where F is of class C1'!, and the set-valued mapping T has closed graph. Obviously,
the reference solution @ = (Y, p, 7, u) satisfies (4.5). The generalized Newton method
for solving (4.5) is similar to the Newton method for equations in Banach spaces.
Suppose that we have already computed w1, ..., w,. Then wpy41 is to be determined
by the generalized equation

(4.6) 0€ F(wn) + F'(wn)(w — wy) + T'(w).

The convergence analysis of this method is closely related to the notion of strong
regularity of (4.5) going back to Robinson [29]. The generalized equation (4.5) is said
to be strongly reqular at w, if there are constants r; > 0,73 > 0, and ¢, > 0 such that
for all perturbations e € By, (Og) the linearized equation

(4.7 e € F(w) + F’(m)(w —w) 4+ T(w)
has in B,, (@) a unique solution w = w(e), and the Lipschitz property
(49) ter) — wlea)llw < exlles — ealln

holds for all e1,es € B,,(0g). In the case of an equation F(w) = 0, we have
F(w) = 0,7T(w) = {0}, and strong regularity means the existence and boundedness
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of (F'(w))~'. The following result gives a first answer to the convergence analysis of
the generalized Newton method.

TuroreM 4.1. Suppose that (4.5) is strongly regular at W. Then there are ry >
0 and cy > 0 such that for each starting element w1 € B, (W) the generalized
Newton method generates a unique sequence {wp}o>,. This sequence remains in

Blw,—w|jw (W), and it holds
(19) lunss ~ Tl < exllwn - @l Ve

This result was apparently shown first by Josephy [18]. Generalizations can be found
in Dontchev [8] and Alt [1], [2]. We refer in particular to the recent publication by Alt
[3], where a mesh-independence principle was shown for numerical approximation of
(4.5). We shall verify that the second order condition (SSC) implies strong regularity
of the generalized equation at W = (¥, B, 7, U) in certain subsets ‘//\;d C Vad, fjad C Uaa.
Then Theorem 4.1 yields the quadratic convergence of the generalized Newton method
in these subsets.

5. Strong regularity. To investigate the strong regularity of the generalized
equation (4.5) at @ we have to consider the perturbed generalized equation (4.7).
Once again, we are able to interprete this equation as the optimality system of a
linear-quadratic control problem. This problem is not necessarily convex, therefore
we study the behaviour of the following auxiliary linear-quadratic problem associated
with the perturbation e:

(@6) Minimize

Je(y,v,u) = Sj;(géy + va) y(T) dz +£(fy +79) ydxdt—l—({(fu + ) v dzdt
7 @y ) vaSdl + [ (g + ) udSdi + 3 [ Gy (u(T) = 9(T))*da

(5.1
LYY 7Q(Y Y Y=U\Tpegz(¥—Y
+%@[(U—E)TD2HQ(v—E)dmdt-l_%yjj(u—ﬂ)TD?Hz(u—ﬂ)det
subject to
yt+Ay+d(§,f)+§y(y—y)+gv(1}—1})ZEQ in Q
(5.2) Oy +b(g,u)+by(y—y)+by(u—i)=ex onX
y(o):yﬂ H]Q;

and to the constraints on the control

v E i}ad = {U S Vad | ’U(.’l‘,t) = 'D(I)t) on Q(U)}

(5.3) U € Ugqg = {u € Uga | u(z,t) = u(x,t) on X(o)}.

In this setting, the perturbation vector e = (eg, ex, 0,79, v, ¥, Yo, Yu) belongs to E.
The hat in (Q‘FG) indicates that v and u are taken equal to v and @ on the strongly
active sets Q(o), X(o), respectively.

Remark: The generalized equation (4.7) is equivalent to the optimality system of the
problem (QP.) obtained from (@e) on substituting V,4 for %d and Uyq for ﬁad,
respectively.

In the space of perturbations F we need another norm

llellz = [leqllzz(@) + lles|lraz) + [vellra(@) + llvsllra(z)+
Hlvallzz@) + vwllza@) + Ivllza(s)-
9



Moreover, in W we shall also use the norm

Iy, 2, v, u)|l2 = lyllwo,r) + Ipllwor) + IvllL2 Q) + lullrz)

The following results are known from the author’s paper [33]:

Lemma 5.1. Suppose that the second order sufficient optimality condition (SSC) is
satisfied at (§, v, u) with associated adjoint state p. Then for each e € E, the problem
(@‘]\36) has a unique solution (Y., ve, u.) with associated adjoint state p.. Let (y;, vi, u;)
and p;,t = 1,2, be the solutions to e; € F,i = 1,2. There is a constant I3 > 0, not
depending on e;, such that

(5.4) [[(y1, 1,01, u1) — (y2, p2, v2, ua)||2 < lafler — eal|2

holds for all e; € F i=1,2.

By continuity, (5.4) extends to perturbations e; of L% Tt was shown in [33] that
the second order condition (SSC) implies the following strong Legendre - Clebsch
condition:

(LC) HE (z,t,9(2,1),9(z,1),p(z,1)) >F ae. on Q
HE (z,t,9(x,t),4(x,1)p(x,1)) > 6 a.e. on %.

THEOREM 5.2. Let the assumptions of Lemma 5.1 be satisfied. Then there is a
constant loo > 0, not depending on e;, such that

(55) ||(y1;p];U1;U1) - (yZ;pQ;UQ,Uz)”W S loo ||61 - e2||E

holds for (yi,vi,u;,p;) and e;,1 = 1,2, introduced in Lemma 6.1.

This Theorem follows from [33], Thm. 5.2 (notice that v; = ¥ and u; = @ on (o) and
Y (o), respectively. This can be expressed by taking u, := up := % and v, := vp := ¥
on these sets. Then [33], Thm 5.2 is easy to apply).

Unfortunately, (5.5) holds only for Vaa and U,q. We are not able to prove (5.5) in
Vad; Uaq. In this case, J. might be nonconvex and (@ P.) may have multiple solutions,
if solvable at all. However, formulating Theorem 5.2 in the context of our generalized
equation, we already have obtained the following result on strong regularity:
THEOREM 5.3. Suppose that w = (y,p, v, u) satisfies the first order optimality system
(2.1), (3.2) - (3.3), (3.7) - (3.9) together with the second order sufficient condition
(SSC). Then the genemlzzed equation (4.5) is strongly regular at w, provided that the
control sets Vad, Uad are substituted for V,q, Uqq in the definition of T(w).

Remark: The last assumption means that the normal cones N9 (v), N¥(u) are defined
on using V,q and ﬁad, respectively.

To complete the discussion of the Newton method, the following questions have to be
answered yet: How we can solve the generalized equation (4.6) in Va4, Uaq, and how
we get rid of the artificial restriction v = v on Q(o),u = 4 on X(o)?

We shall show that the SQP method, restricted to a sufficiently small neighbourhood
around ¥ and u, will solve both the problems: If the region is small enough, then
the SQP method delivers a unique solution wy, = (Yn, Pn, Vn, n), where v, = ¥, up =
@ is automatically satisfied on Q(¢),X(0). Moreover, this w, is a solution of the
generalized equation (4.5), that is, a solution of the optimality system for (P).

10



6. The linear-quadratic subproblems (QP,). The presentation of the SQP
method is still quite formal. We do not know whether the quadratic subproblem
(QP,) defined by (3.21) - (3.23) is solvable at all. Moreover, if solutions exist, we are
not able to show their uniqueness. There might exist multiple stationary solutions,
i.e. solutions satisfying the optimality system for (Q P,). Notice that the objective J,
of (QP,) is only convex on a subspace. Owing to this, we have to restrict (QPy,) to a
sufficiently small neighbourhood around the reference solution (4, #). This region is

defined by

Vg = {v € Vaa|l|v = 9[|L=(q) < ¢}
Uga = {u € Uaa ||Ju — il L= (x) < o},
where ¢ > 0 is a sufficiently small radius. To avoid the unknown reference solution

(7, @) in the definition of the neighbourhood, we shall later replace this neighborhood
by a ball around the initial iterate (vq,u1) .

Let us denote by (QPZ) the /I\)robLem (QPy) restricted to V%, U2, and by (@n) the

same problem restricted to V,4, Usg, respectively. To analyze (@n) in a first step,
we need some auxiliary results.
LEMMA 6.1. For all K > 0 there is a constant c;, = cr,(K) such that

(6.1) E < en(K)||wn — w||lw
holds for all w, € W with ||w, — @||lw < K, where the expression £ is defined by

&=max {17 = fulle=(q), Iy —fylle @ llgs — ﬁulle o 19 = GyllLoe(z
ldy —d ||L°° (@ 147 = dy ||L°° Q) 3 g = byllre(s ) ||§ b ||2L«>° )0 lley — ‘Py”c
||60yy sonyIC @) |D?H" — D*HC[1(q), ||D H®" — D*H* ||I°° @1

Proof. The estimate follows from the assumptions (A2)—(A4) imposed on the functions
f,9,¢,b,d in section 2 and 3. For instance, the mean value theorem yields

115 = follo=(q) = ( Sll)PQesslfuy(y”,vﬂ)(yn =)+ fou (07, 0") (vn — 7]
T,t)E
< o(K) sup ess(lym — 31+ [vn — 7]
(=1)€Q
y (3.5), where y¥ = §+ 9(yn — 9), v’ = v+ (v, — v) and ¥ = 9(z,t) belongs to
( ,1). (Consider for example the estimation

1oy (0", 0")] < 1y (0,0) [+ [foy (", 0") = fuoy (0,0)] < e1 + e(K) (|y” | + ")
<ca+4ceK) K,

which follows from (3.5)). The other terms in & are handled analogously. O
We shall denote the quadratic part of the functional J,, by

Bul(yr, v1,m), (y2, v, u2)] = fﬂogy yi (D) yo () dz + [(y1,v1) D?HO™ (yo, vo) T dadt
& Q
+ [ (g1, un) D2HE" (yy, us) T dSdt
>

(6.2)

and write for short B,[(y, v, u), (y,v,u)] = Ba[y, v, u]*.
Lemma 6.2. Suppose that the second order sufficient optimality conditon (SSC} is
satisfied. Then there is g1 > 0 with the following property: If ||w, — ©||lw < o1, then

J
(6.3) Baly, v, u)” > S (v, v, )l

11



holds for all (y,v,u) € H satisfyingv =0 on Q(0), u= 0 on I*(0) together with

yt+Ay+dgy+dﬁv:0
(6.4) 3,,y-|—bg y+bru=0
y(0) = 0.

Proof. Let z denote the weak solution of the parabolic equation obtained from (6.4)
on substituting dy, dy, by, b, for dy, dy, by, by, respectively. Then

y) ul

(y—2)i+Ay—2)+dy(y—2) =
Qly—2)+by(y—2) =
(y —2)(0)

We have Jy > co, TJy > c¢p. The differences on the right hand sides can be estimated
by Lemma 6.1, where K = ||w||w + o1, hence parabolic L? - regularity yields

(dy — )y + (dy — ) v
(Ey—b”)y+(b —by)u
0,

ly = 2llwo,r) < e(lldy = dyllz=@)llyllz=(@) + [1dy = & llz=(q ||U||L2
(6.5) +llby — b7l (s ||y||L2 £) + [|bu = O [[[Ju ||L2
< cor(llyllwom) + lIollz2(Q) + llullzaz)) < CQlH(yavau)HH

Substituting y = z + (y — z) in By,
Bn [ya v, u]2 = Bn [Z + (y - Z)J v, u]2
= Blz,v,u}’ + (Bn — B)[z,v,u]* + 2B,[(2,v,u), (y — 2,0,0)]
+Bn [y -z 0; 0]2
is obtained. (SSC) applies to the first expression B, while the second is estimated
by Lemma 6.1. In the remaining two parts, we use the uniform boundedness of all
coefficients. Therefore, by (6.5)
Buly,v,ul* 2 8[|(z, v, )| = corll(z, v, w)[|F = ell(z. v, )| mlly = 2llwo,r)
—clly— Z”%V(O,T)

> 20|z, v, u)lliy = carll(z, v, 0) ||y, v, w)llr = coill (v, v, )l

W

if g1 is sufficiently small. Next we re-substitute z = y 4+ (z — y) and apply (6.5) again.
In this way, the desired estimate (6.3) is easily verified for sufficiently small o1 > 0. O
COROLLARY 6.3. If [|lw, — 0|lw < 01 and (SSC) is satisfied at w, then (C/Ql\Dn) has a
unique optimal pair of controls (¥, 1) with associated state y.

Proof. The functional J, to be minimized in (él\Jn) has the form (see (3.21))

1
Jn(y;v:u) = an(y,v,u) + iBn[y_ Yn, U — vn;u_un]2;

where an is a linear integral functional. J,, is uniformly convex on the feasible region
of (QP ). By Lemma 6.2, the sets Vad, Uaq are weakly compact in L%(Q) and L?(X),
respectively. Therefore, the Corollary follows from standard arguments. O

Let us return to the discussion of the relation between Newton method and SQP
method. In what follows, we shall denote by w, = (Yn, Pn, on, in) the sequence of
iterates generated by the SQP method performed in ‘sz, Usd (provided that this
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sequence is well defined). The iterates of the generalized Newton method are denoted
by wy,. Consider now both methods initiating from the same element w,, = w,.

If [|wn, — @|lw < g1, then Corollary 6.3 shows the existence of a unique solution
(Unt1, Ung1, Unyr) of (éf\jn) having the associated adjoint state p,11. The element
Wp41 solves the optimality system corresponding to (él\Jn) By convexity (Lemma
6.2), any other solution of this system solves (@T’n), hence it is equal to is ti,41.
On the other hand, the optimality system is equivalent to the generalized equation
(4.6) at w, (based on the sets YAfad,[//\'ad). For ||w, — @|lw < rar, one step of the
generalized Newton method delivers the unique solution wy, 1 of (4.6). As w41 solves
the optimality system for (C/Q‘F ), it has to coincide with wy,41. Suppose further that
||wn — w||lw < min{ry,01}. Then Theorem 4.1 implies that w,41 = Wn41 remains
in Brin {ru, 001 (@), 50 that ||ty 41 — @|lw < min {ra, 01} Consequently, we are able
to perform the next step in both the methods. Moreover, in Vad, Uad each step of the
Newton method is equivalent to solving (QP ), which always has a unique solution.
In other words, Newton method and SQP method are identical in ?ad, ﬁad:
THEOREM 6.4. Let w = (y,p, v, u) satisfy the first order optimality system (2.1), (3.2)
- (3.3), (3.7) - (3.9) together with the second order sufficient optimality conditions
(SSC). Suppose that w1 = (y1,p1,v1,u1) € W is given such that ||w1 — w|lw <
min {o1,7n}, v1 € ‘7(1(1, and u, € ﬁad Then in f/ad,(?ad the generalized Newton
method 1s equivalent to the SQP method: The solution of the generalized equation
(4.6) is given by the unique solution of(QP ) along with the associated adjoint state.
The result follows from Theorem 5.3 (strong regularity) and the considerations above.
Remark: 1t is easy to verify that w,, the solution of (@‘I\Jn), obeys the optimality
system for (P) in the original sets V,q4, Uqq (cf. also Corollary 6.9).

Next, we discuss the optimality system for (C/QI\DH) and (QPg). Let us denote the
associated Hamilton functions by H to distinguish them from H, which belongs to

(P):

HO(z,t,y,p,0) = [} (y = yn) + [ (v = va) = p (d" + djj(y — yn) + d7 (v — vn))

) Ly = o= v )D2HQ"(y Yo,V — )T

H¥(z,t,y,p,u) = g3 (Y — ya) + g0 (u— un) — p (0" 4+ b3 (y — yn) + b3 (u — un))
+%(y yn,u—un)D2H (J Yn, U un)Ta

where y, v, p, u are real numbers and (z,t) appears in the quantities depending on
n. Notice that these Hamiltonians coincide for (él\:’n), (QPg) and (QP,), since these
problems differ only in the underlying sets of admissible controls. We consider the
problems defined at w,, = (Yn, Pn, Un, U,). In what follows, we denote solutions of the
optimality system corresponding to (QPg) by (y*,vt, ut). The optimality system
for (QP2) consists of

(6.6) /[:IUQ( toptiot) (v —ovt)dedt >0 YveVE
Q

(6.7) / yt,pt ut)(u—ut)dSdt >0 YuelUg,
b
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where the associated adjoint state pt is defined by

_pj'+Ap+ _ﬁQ_fn H’Qy,n(y+_yn)+Hﬁ,n(v+_vn)_de+
(6.8) p(T) = say + sayy( (1) - y(T))
Op = Hy =gy + Hy"(y* — yn) + Hy" (ut = up) = bpp*

The state-equation (3.22) for y* and the constraints vt € V2 ut € U?, are in-

cluded in the optimality system, too. The optimality system of (QT’H) has the
same principal form as (6.6) - (6.8) and is obtained on replacing (y*,p*,vt,ut) by
(Jn+1,Prt1; Unt1, Uny1). Moreover, ‘7(1(1, ﬁad is to be substituted for V.2, U2, there.

In the further analysis, we shall perform the following steps: First we prove by a
sequence of results that the solution (v, #y) of (QP ) satisfies the optimality system
of (QPg) for sufficiently small . Moreover, we prove that (QPg) has at least one
optimal pair, if w, is sufficiently close to @. Finally, relying on (SSC), we verify
uniqueness for the optimality system of (QPg). Therefore, (v,,u,) can be obtained
as the unique global solution of (QP2). Notice that (QF2) might be non-convex,
hence the optimality of (o5, %,) does not follow directly from fulfilling the optimality
system.

LEMMA 6.5. There is g2 < 0 with the following property: If o < 02, wy, € W fullfils
l|wn — @||lw < 02, and (y*,vt, ut) satisfies the constraints of (Q P2) with associated
adjoint state pt, then

(6.9) sign I?UQ( topt vt (2,t) = sign HUQ(g,ﬁ, v)(z,t) a.e. on Q(o)
(6.10) sign HE( +, +, ut)(z,t) = sign Hf(g,p, u)(z,t) a.e. on (o)
(6.11) \AQ(y*, pt,vt) (2, 1) 2% ae. on Q(o)
(6.12) \HE(y*, pt, +)(:n,t)|2% a.e. on B(c).

Proof. Let us discuss H?, the proof is analogous for INJE We have

HO = + HE™M (gt —yn) + HE" (04 — v,) — pTdl
= fv _chzv +{f - fv + ( ;lv _pndgr/lv)(y-l— — Yn)
+(fy = padi,) (v —va) + (pdy — pTdi)} = A+ {..} > 0 — [{...}]

a.e. on (o). Lemma 6.1 applies to estimate |{...}| < ¢ g2, where ¢ does not depend
on wy,,yt,pt,ut vt provided that we are able to prove that |[pt — I3||C(Q) < ¢ 09
and ||yt — g||c(Q) < ¢ g2 holds with an associated constant c. Let us sketch the
estimation of y* — 3 =: y. This function satisfies

v+ Ay+dpy = —di (vt —8) + (dy —d))(yn — §) + (d — d))(va — D)
Byy + by = —di (ut — @) + (b)) — b)) (v — §) + (b — b)) (un — 1)
y(0) =0,

where dZ = dy(y+ IV yn — 9),7 + I(vn — v)), ¥ = d(a,t) € (0,1), and the other
quantities are defined accordingly. We have maz {||vt — v||p(q), [|[uT — u|[Lo(x)} <
0, maz {||yn — Yllc(q): llun — tllL=(s), [[vn — ¥[|L(@)} < 02. Thus the right hand sides
of the PDE and 1ts boundary condition are estimated by ¢ - g2. The estimate for
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[yt — 7| follows from Theorem 2.2. The difference p* —j is handled in the same way.
a
COROLLARY 6.6. If maz {||w, — @||w, 0} < 02, then the relations

vt (z,1)
ut(z,t)

(z,t) a.e. on Qo)

u(z,t) a.e. onX(o)

hold for all controls (v, ut) of (QP2) satisfying together with the associated state y*
and the adjoint state p* the optimality system (6.6) - (6.8), (3.22).

Proof. On Q(c) we have #(z,t) = vy, where HQ(z,t) < —o, and o(z,1) = v,
where HZ(x,1) > o. Therefore, vt € V2 means v(z,t) € [vy — o,v3] or v(z,t) €
[va, va + 0], respectively. Lemma 6.5 yields H? < —o/2 or HQ > ¢/2 on Q(c), hence
the variational inequality (6.6) gives vT = v or v* = v,, respectively. In this way,
we have shown v+ = v on Q(c); u™ is handled analogously. O

COROLLARY 6.7. Let the assumptions of Theorem 6.4 be satisfied and suppose that
[|w1 — w|lw < ¢ := min{ra,01,02}. Then ||, — @|lw < o holds for alln € N. In
particular, vy, € VS i, € U,

This is obtained by Theorem 4.1 and the convergence estimate (4.9).

CoROLLARY 6.8. Under the assumptions of Corollary 6.7, the sign-conditions (6.9)
- (6.12) hold true for (y*,pt, vt ut) = (4, Pn, Un, Un) -

(Corollary 6.7 yields o, € V.2, iin, € UZ3, hence the result follows from Lemma 6.5.)
COROLLARY 6.9. Under the assumptions of Corollary 6.7, the solution (v, u,) of
(C/ZI\JH) satisfies the optimality system of (QP,), too.

Proof. The optimality systems for (C/Ql\Jn) and (QP,) differ only in the variational
inequalities. From the optimality system of (C/Ql\Jn) we know that

(6.13) /ﬁlﬁ(gn,ﬁn,@n)(v — bp)dadt >0 Vv € Vaa.
Q

On Q(o),4n = ¥ = v,, if HY > o and 4, = © = v, if H? < —o. Lemma 6.5
and Corollary 6.8 yield I—NIUQ(Q,I,}},I, Un) > 0/20r IjIUQ(Qn,ﬁn, Up) < —0 /2, respectively.
Therefore, IjIUQ(Qn , Un, Pn)(v — 05) > 0 holds on Q(c) for all real numbers v € [vq, vg].
On the complement @ \ @(¢), the controls of Va4 are not restricted to be equal to 7,
hence in (6.13) v was arbitrary in [u,, u3]. This yields

/I—NIUQ(U—f)n)d;rdt: / ﬁIUQ(U—f)n)d;rdt—i- / ﬁf(v—@n)dmdt Vv € Vaq,
Q A\Q(o) Q(o)

where the nonnegativity of the first term follows from (6.13). The variational inequal-
ity for 4y, is discussed in the same way. O

COROLLARY 6.10. Let the assumptions of Corollary 6.7 be fulfilled. Then (0, y,),
the solution of (C/ZI\JH), satisfies the optimality system for (QPg).

Proof. By Corollary 6.9, (v,,u,) satisfies the variational inequality (6.13) for all
v € Vaa, u € Uga, in particular for all v € V4, u € U%,. Moreover, 4, € V& u, € UZ,
is granted by Corollary 6.9. O

LEMMA 6.11. Assume that w = (y,p, v, u) satisfies the second order condition (SSC).
If 93 > 0 is taken sufficiently small, and ||w, — @||lw < gs, then for all o > 0 the
problem (QP?) has at least one pair of (globally) optimal controls (v, u).
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Proof. If ||w, — @||lw < 03 and g3 > 0 is sufficiently small, then

(6.14) HE (x,t,yn(2,1), pn(x,1), va(z, 1)) > a.e. on @

(6'15) Hfu(x,t,yn(z,t),pn(l',t),un(l',t)) >

follows from (LC), ||yn—37||C(Q)-|—||pn—13||c(Q)-|—||vn—17||Loc(Q)+||Un—ﬂ||L°°(E) < gsand
the Lipschitz properties of H? | HZ . Notice that w,, belongs to a set of diameter K :=
[|@||w + o3, hence the Lipschitz estimates (3.5) and (3.6) apply. Therefore, (Q P2) has
the following properties: It is a linear-quadratic problem with linear equation of state.
In the objective, the controls appear linearly and convex-quadratically (with convexity
following from (6.14) - (6.15)). The control-state mapping (v, u) — y is compact from
L*(Q) x L*(X) to Y. Moreover, V4, U?, are non-empty weakly compact sets of
L?. Now the existence of at least one optimal pair of controls follows by standard
arguments. Here, it is essential that the quadratic control-part of J,, is weakly l.s.c.
with respect to the controls and that products of the type y-v or y-u lead to sequences
of the type ”strongly convergent times weakly convergent sequence”, so that y, — y
and v, — v implies y,v, — yv. O

Remark: Alternatively, this result can be deduced also from the fact that (g, n, Gn)
satisfies together with p, the first and second order necessary conditions for (QPg)
and that the optimality system of (QP2) is uniquely solvable (cf. Thm. 6.12).
THEOREM 6.12. Let w = (y,p,v,u) fulfil the first order necessary conditions (2.1},
(3.2) - (3.3), (3.7) - (3.9) together with the second order sufficient optimality condi-
tion (SSC). If wy, = (Yn, P, Vn, Us) € W is given such that maz{||w, — @||w, 0} <
min {ry, 01, 02, 03}, then the solution (Un,u,) of (Cjﬁn) is (globally) optimal for
(QPg). Together with yn,pn it delivers the unique solution of the optimality system
of (QP2).

Proof. Denote by (vt,u™) the solution of (QP¢), which exists according to Lemma
6.11. Therefore, (y*,pT,vt,ut) = w' has to satisfy the associated optimality sys-
tem. On the other hand, also W, = (§n, Pn, Un, @n) fulfils this optimality system by
Corollary 6.10. We show that the solution of the optimality system is unique, then
the Theorem is proven.

Let us assume that another w = (g, p, v, 1) obeys the optimality system, too. Inserting
(v,4) in the variational inequalities for (vt ut), while (vt ut) is inserted in the
corresponding ones for (v, u), we arrive at

ng"{ff?(yﬁpﬂ vF) (6 — vt) + HQ, p, o) (vt — ©)} dedt +
(6:16) + [{AZ(yF, pt ut) (@ — ut) + B3 (g, p, @) (ut — @)} dSdt > 0.
b

The expressions under the integral over @ in (6.16) have the form
FRO = o)+ HE (b —yn) (@ — oF) + HE"(0F = va) (0 — v¥) = p*dy (0 — o)
(=0t HE () (6 = of) + HE" (0F —va)(@ = oF) = ptdf (o - o),

the other terms look similarly. Simplifying (6.16) we get after setting y = y — y*,
v=t—vt,u=u—ut,p=p—pt
0< = [{HZ yo + HZ™0* +p dy v} dedt
(6.17) Qs S, 2
/ — [{H M yu + HZ u® + p b u} dSdi.
b
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The difference p = p — pt obeys

—pi+Ap=HS "y + Hg’ 1)—(1”
(6.18) Ovp = Hy"y + Hyy b”
p(T) = ¢y ().

Multiplying the PDE in (6.18) by y and integrating over ) we find after an integration
by parts

(6 19) —fp dl‘+f yt,p HY(Q) H dt+f<AVp,Vy>dxdt
) Q
:EQ[(H?%’” —|—Hﬁjnyv—d” py)d:cdt—}-f HE” 2—|—H2”yu—bg py)dSdt.

This description of the procedure was formal, as the definition of the weak solution
of (6.18) requires the test function y to be zero at t = T'. To make (6.19) precise we
have to use the information that p € W(0,7),y € W(0,T) along with the integration
by parts formula

T

T
/(pt;y)Hl(ﬂ)’,Hl(ﬂ)dt = /(P(T_)y(T) - / Yo, P) iy, mi(a)dt.
0

0 Q

Next, we invoke the state equation for y = §—y* and the condition for p(7') to obtain
from (6.19)

— fgpgyy )Qdm — I(HQ7”y2 + HQv’”yv) dxdt

(6.20) —f HE y? + HE ) dSdt = fd” v p dedt + fd” u p dSdt.

Adding (6.20) to (6.17) yields

0<-— / o0 y(T)?da — / (v, 0) D* HO™ (y,v) T ddt — / (y, w) D2H " (y, )T dSdt,
19) Q b5\

that is 0 < —Q"[y, v, u]?. As maz{||w, —©|lw, o} < g2, Corollary 6.6 yields v = 0 on
Q(o) and u = 0 on X(c). Therefore, Lemma 6.2 applies to conclude §/2||(y, v, u)||5 <
0,i.e. v=0,u = 0. In other words, © = v*, 4 = ut, completing the proof. O

Now we are able to formulate the main result of this paper:

THEOREM 6.13. Let w = (y,p, v, u) satisfy the assumptions of Theorem 6.12 and de-
fine oar = min{rur, 01, 02, 03}. If mazx {o,||w1 —w||} < on then the sequence {w,} =
{(Yn,Pn, V0, un)} generated by the SQP method by solving (QPg) coincides with the
sequence Wy, obtained by solving (él\Jn) Therefore, wy, converges q-quadratically to
w according to the convergence estimate (4.9).

Thanks to this Theorem, we are justified to solve (QPg) instead of (C/Ql\Dn) to obtain
the same (unique) solution. This result is still not completely satisfactory, as the
unknown element w was used to define (QP2).

However, an analysis of this section reveals that any convex, closed set ‘N/ad, Uaq can
be taken instead of V2, U, . if the followmg properties are satlsﬁed

Vaa C VEY Py Uaa C U2y, and Vaa D Vagj,Uad D U2y for some gg > 0 (the last condition
is needed to guarantee ¥, = v on Q(0), 4, = u on X(o) and, last but not least, to
make the convergence ¢, — v, &, — u possible).
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Define, for instance, go = ||@ — w1||w, where gy < %QN;

Vaa = {v € Vad| |Jv - v1|Lee(@) < 200}

Uad ={u € Uaq| |Ju— 1]1||Lm y < 200},

Where 00 = || — “11||W is the distance of the starting element of the SQP method to
. Then V.2 C Vag C V2. The same property holds for Usq. Then case the SQP
method will deliver the same solution in Vad, Qad as in Vad ,Ufjlv. This however, is

the solution in Vad, Uad.

Remark: 'The restriction of the admissible sets to V%, U2, might appear artificial,
since restrictions of this type are not known from the theory of SQP methods in
spaces of finite dimension. However, it is indispensible. In finite dimensions, the set
of active constraints is detected after one step, provided that the starting value was
chosen sufficiently close to the reference solution. The further analysis can rely on
this. Here, we cannot determine the active set in finitely many steps unless we assume
this a- prlorlly as in the definition of QP
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