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Abstract

A shape optimization problem connected with the thermal deformation of elastic
bodies is considered. Based on a finite element discretization of the thermoelastic
system, a gradient method for solving the associated nonlinear programming prob-
lem is discussed. Several approaches to calculate the needed gradients are investi-
gated. Finally, some numerical examples are presented.

1 Introduction

In [15], Sprekels and Tréltzsch investigated an optimal shape design problem for a system
of thermoelastic equations. It is connected with the following question: Suppose that an
isotropic and homogeneous solid body is subjected to a prescribed (known) thermal treat-
ment. Due to the temperature change, the body undergoes a thermoelastic deformation,
that is, the induced thermal stresses force the body to change its shape in time. The
following question arises: Which initial shape must the body be given in order that its
final shape after the thermal treatment resembles a desired prescribed form as closely as
possible?

A very simplified problem of this type was treated in [15] by transforming the system of
equations onto a fixed domain, thus converting the optimal shape design to the optimal
control of the coefficients in a transformed system of partial differential equations on a
fixed domain.
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The existence of optimal shapes and associated first order necessary conditions were
proved. In our opinion, this method is not sufficiently effective for solving the prob-
lem numerically. First, the transformation ends up with a convection term in the heat
equation which may be a source of difficulties. Second, as the transformed system is not
standard, the available numerical methods for thermoelastic systems do not apply.

Therefore, we decided to discretize the underlying domain, to handle the system of ther-
moelasticity by an effective finite element multigrid technique and to establish a descent
method to determine the optimal nodal points of the discretized shape. Methods of this
type were frequently and succesfully applied to different problems. Basic work to this field
was done by PIRONNEAU [12], HASLINGER/ NEITTAANMAKI [5], and recently, by
SOKOLOWSKI/ ZOLESIO [14]. We refer also to the references of these textbooks. More-
over, we mention BUTT/ RUBIO [1], CHEU [2], DELFOUR/ PAYRE/ ZOLESIO [3],
DEMS/ MROZ [4], HASLINGER/ NEITTAANMAKI/ SALMENJOKI [6], KAMIYA/
KITA [7], KARAFIAT [8], MAKINEN [9], MERIC [10], MYSLINSKI [11], SALMENJO-
KI [13], and YAO/ CHOI [16], where finite element techniques are used to discuss optimal
shape design problems analytically and / or numerically.

The remainder of the paper is organized as follows: In section 2 we formulate the optimal
shape design problem. Its discretized form is introduced in section 3. Different numerical
approaches to solve the discretized problem are considered in section 4. We focus our
investigations on the computation of derivatives with respect to nodal points in order to
obtain a descent direction for gradient methods. The final part of this section is devoted
to the presentation of some numerical examples.

2 The optimal shape design problem

Let s € C*"[0,d] be given, and suppose that initially, at ¢ = 0, the body occupies the
domain (see Fig. 1)

Q(s) = {(z1,22) € R*: 0 < 2y < d, 0 <z < 8(x1)}. (2.1)
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Figure 1: Shape of the domain (s).

The set T's(s) = {x2 = s(x1)} denotes that part of the boundary I'(s) which is to be
shaped.

The function s plays the role of the control variable. Let s, 3, 3, ¢ denote fixed positive
constants, and let r € (0, 1), 84, s» € IR be given. We assume that s satisfies the conditions

0<s<s(r)<3, [§(n)]<3§, Vrelo,d, (2.2)
|S/(Tl) - S/(Tl)| <c |7-1 - 7-2|T , VTE [07 d] ) (23)
3(0) =s., s(d)=ss, (2.4)
5 (2.5)

Thus, s € U, where U = {s € C'7[0,d] : s satisfies (2.2)-(2.5) }, defines the set of

admissible functions. Note that U forms a nonempty, convex and compact subset of

C[0, d].

Next, let ¥ = J(t,2),t € [0,T], z = (1, 22) € Q(s), denote the temperature. We assume
that 9 satisfies the parabolic problem

Di(t,x) = ald(t,x) in (0, 7] x Qs)

9(0,2) = vo(x) in Q(s)
g—i(t,x) — 0 on  (0,T] % (T UTy) (2.6)
g—i(t,w) = a(ds(x) —J9(t, 2)) on (0, 7] x I's,

where g and ¥ are the (given) initial temperature and the temperature of the surrounding
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medium at I's(s), respectively, and a = =, a = 2=

stand for mass density, specific heat, heat conductivity and heat exchange coefficient, in
that order.

. The positive constants p, ¢, k, oy

Let 7;; = mij(u(t,2)) and ;; = &;;(u(t,z)) denote the components of the stress and
(linearized) strain tensors, respectively, where u = (u'(¢,z),u*(t,z)) is the displacement
vector. Assuming a linear thermoelastic behaviour, we obtain for the quasistatic regime

—E_ (Au + (L) grad (div u)) = pF— %ael grad 9 in Q(s), (2.7)

2(14v) 1-2v

where F, v and o are the Young modulus, the Poisson ratio and the linear heat stretch
coefficient, respectively. F'is the body force.

We impose the boundary conditions

= 0on I}
u' = 0 on Ty
712 = 0 on Ty (2.8)
min' + men? = 0 on T'a(s)
mn' +mon? = 0 on D3(s),
where n = (n',n?) is the outward unit normal vector on TI's(s). It is convenient to
introduce the Lamé constants p = 2(1€u)’ A= (1+u1)/(E1—2u) and the coefficient § = %Ozez.

Let § = §(x1) denote the upper boundary of the thermally deformed domain, which should
be approximated as closely as possible at the final time 7. Assuming that the vertical
displacement u? dominates the horizontal one, the following optimal shape design problem
is considered:
Minimize
d
P) /(3(:61) 4w (T, a1, s(21)) = &(21))? da (2.9)

0
subject to s € U% and to the equations (2.6)—(2.8).

As only the final displacement u(7T, z) plays a role in (2.9), we write in the sequel u(z) :=
u(T, x). This displacement u is obtained from (2.7), where ¥ = J(T, z) is inserted in the
right—hand side.

We also introduce the abbreviating notations

(u,v)q = /uT(x)'v(;z:)d;z:,

(u,v)p = /‘UT(.I)’U(.Z')de.
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Then the weak formulation of the state equations (2.6)—(2.8) reads

(D:(1), w)aesy + a (VI(L), Vw)ae) + o (F(t), w)rys) = a (Vs(1), w)r,s), (2.10)
for all w € H'(Q(s)) and a.e. ¢t € (0,7).

?(0) = o, (2.11)

(7ij(u(x)), €ij(v(z)))ae) = (PF,v)a(), (2.12)

for all v € V(s), where V(s) = {v e (H'(2(s))*:v=0o0n Ty, v' =0on 'y}, and where

the summation convention is used.

The quantities ¥, u, 7, and € are connected through the relations

1 [out  Oul
o= L , 2.13
i z(axﬁaxi) (2.13)
T11 2# + A A 0 €11 1
T22 = A 2,& + A 0 €929 - /319 1 . (214)
T12 0 0 2’LL €12 0

From several papers it is known, that under the assumptions made here a unique solution
(¥, u) to the weak thermoelasticity system (2.10)—(2.12) exists. In [15] the existence of
at least one optimal shape function was shown under the conditions ¥, € H?*(£(s)),
Vs = Vs(t,21), 95 € CY[0,T], Ly(0,d)), F = F(z1), F € Ly(0,d), and a compatibility
condition between ¥y and ¥5(0).

3 Discretization of the problem

We consider an approximation of the boundary I's(s) by linear B—splines. Let the interval
[0,d] be divided into m — 1 subintervals [z;, z;41], ¢ = 1,...,m — 1 and let z; = s(z;),
1 = 1,...,m denote the values of the piecewise linear shape function in the nodal point

veny

s(x) = zin:zz-Bz-(x), (3.1)

where B;(z),1=2,...,m — 1, is the linear B-spline which equals one at z;, zero at x;_1,
ziy1, and where Bi(z), B, (x) are the B—splines with known modification for z1, x,,
respectively. Now the vector z stands for our varying shape.

Let for convenience (z), I's(z) denote the domain Q(s) and I's(s) with shape function
s given in the form (3.1), h be the mesh discretization parameter, H}(2(z)) be an n—
dimensional subspace of H'(£)(z)) and V,(z) an N-dimensional subspace of V(z).



We are looking for a semidiscrete approximation of the solution of (2.10) —(2.11) in
C0,T; H (Q(2))]. Let {p;}7 be a basis of H}(Q(z)). Then the desired solution can
be described as

n

Uit ) = di(t)pi(a),

=1
where 9; € C1[0,T],7 =1,...,n. Inserting in (2.10)—(2.11), we get fori = 1,...,n
d n n
(2 2 0i(0eiedae + a Vi1V, Veiag
Jj=1 j=1

+ Zﬂ] 99]’992 Ta(z)

=1

= a (s, 0i)rs(»)
Y 0i(0)(¢j, 0)ae) = (Yo, 9i)ae),

i=1

o,

e.g. the system of ordinary differential equations

M(2)9(t) + K()0(t) = g(=)
M()9(0) = 6(2) (3.2)

with M(2) = (mi;(2))ij=1,0m; K(2) = (kij(2))ij=1,.0ns 9(2) = (9:(2))i=1,..n and 0(2) =
(0:(2))i=1,...n

kij(z) a (Vi Voiai) + a (@), 9i)rs(z) (3.3)
mii(2) = (¥),%i)ae) (3.4)
9i(2) = a (Vs,0:)rs(2) (3.5)
0i(z) = (Yo, 9i)a), (3.6)

where ¢,7 = 1,...,n and ¥ = (J;)i=1,.._n-
Next, we analogously consider the space W( mentioned above with basis {1;},. The

)
N
solution of (2.12) is represented by ux(x) = E i(x). We have to mention that uj(x)

and v; consist of two components. We define ty;_; = ( (1) @; and thy; = ( (1) ) Pis

u; € IR, v =1,...,n. Moreover, we put tg;_1 = t9; = 0, if x; € I'y, 9,1 = 0, if z; € T'y,
and renumber all nontrivial ¥;. In this way, we arrive at the basis {1;} Y.

After some transformations in relation (2.12) we arrive at the system of linear equations

A(z)u = f(In(T), 2) (3.7)



with A(z) = (a;j(2))ij=1,.~8, f(9,2) = (fi(V, 2))i=1,..N,

aij(z) = Mdiv ¥, div ¥j)ae) + 20 Y (er(i), enl(ti))a)

k=1

[i(Dh,2) = (pF,¥i)a@) + (BU, div ¥;)a(s),

i,7=1,...,N. Expanding ¥,(z) = f:l Vip;(x) we get
]:

n

fi(0h,2) = pFi(2) + 8 bij(2)0;, (3.8)
7=1
where
Fi = (Foi)age) (3.9)

i=1,...,N,j=1,...,n. After introducing the vector Fj, = (F});=1,..n and the (N x n)
— matrix B = B(z) = (b;;) . , we find

i=1,..., N

1=1,..., n

FOR(T), z) = pFr(2) + BB(2)¥(T), (3.11)

where ¥(T') = (Vi(T))i=1,....n-

Our problem of thermoelasticity can be solved approximately by the system of ordinary
differential equations (3.2) and the system of linear equations (3.7).

In addition, we arrive at the discrete objective functional,

d /om 2
(I)(Z,u) = / (Z[zz + Un(i) — éZ]BZ(l‘)) dz, (312)
0 i=1
where 7 : {1,...,N} — {1,..., N} is a permutation of all indexes such that wu,), 2 =

1,...,m, are the values of the second component u? of the displacement vector in the
node points on the boundary T's(z).

4 Numerical approach for solving the problem

4.1 A Gradient method for solving the programming problem

We have to solve numerically the nonlinear programming problem
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Minimize
(Py) O(z,u) (4.1)
subject to z € U#? and to the equations (3.2), (3.7),

where

U = {zeR":0<s<2z<5 i=1,...,m,

|Zi+1—Zi|Sh§/, i=1,...,m
s<2 <3, 5< 2, <3}

?

Thus, we have set r = 1 (Lipschitz continuity of s’) for numerical reasons, in order to
obtain linear constraints. Let us denote by T' the operator assigning (uﬂ(i))i:l,___’m to z
(according to (3.2), (3.7)) . It is a well-known fact of numerical analysis that a unique
solution of (3.2), (3.7) exists for all z € Up?. Let a certain (arbitrary) numerical routine
be given, which realizes this solution. Then we can handle the operator T' numerically.

We reformulate the programming problem as

(Py) F(z) =®(z,T(z)) = min! (4.2)
z € Ut (4.3)

The operator T is defined through the equations (3.2), (3.7). Therefore, T is differentiable
from IR™ to IR™ provided that the matrices M(z) and A(z) are nonsingular and all entries
of M, A, K, ¢, f, are differentiable with respect to z. This property is satisfied on
sufficiently regular meshes. Let us assume that we are able to determine somehow the
derivative of T' with respect to z in the direction v. Then the derivative of F' in the
direction v is

F'(z)v = (9,(2,T(2)), T'(z)v) rm, (4.4)

thus
grad F(z)=T'(2)"®.(2,T(z)) (4.5)

(by stars we denote transposition). Thanks to this result, we can formulate a gradient

method for solving the problem (4.2)—(4.3).

1. Let k iterations be executed with the result z* € U#¢. Choose an arbitrary stopping
parameter ¢ > 0.

2. Determine T'(z%).
3. Determine grad F'(2*) to find a direction of descent,

4. solve the linear programming problem

hi, = arg zk-}r-%ier[l]":d<grad F(zk), h) gpm.



5. Solve the one-dimensional programming problem (line search)

\p = arg Aréq[(iﬂ]F(zk + Ahg).

6. Determine the new solution
PR + Aphi.

7. I |[2F+ — K| > e, let 25 := 2341 and go to 2.

8. Terminate the method at z*t'.

The exact minimization in step 5 is not practicable. In real computations, a step size
A ensuring a decrease of F' is to be found. We applied the bisection method (cf. the
numerical examples in section 4.5). The calculation of the derivative 7"(z) and step 5 are
the most time consuming steps.

In the next sections we discuss and compare several ways to determine 7"(z).

4.2  Calculation of T'(z)

In order to perform the gradient method, we have to calculate the derivative of the
operator T with respect to z. However, this operator is given only in implicite form

(through the system (3.2), (3.7)) which makes the differentiation of 7" difficult. The

simplest way to approximate 7" is to use finite differences.

By g—T the k—th column of the Jacobian 7"(z) is denoted, hence
2k
oT
T'(z)=|— . 4.6
( ) (azk)kzl,...,m ( )
We approximate this by
.a_T ~ T(z+ecex) — T(z)’ (4.7)
@zk 9

where ¢ is a positive number and ey, is the unit vector in the direction of the k—th coordinate
axis.

Using this approach we have to solve the system (3.2), (3.7) at z+¢cey, and at z to calculate
one partial derivative of T'. Since there are m such partial derivatives, we are forced to
solve the full above mentioned system for m + 1 times. This is time—consuming. On
the other hand, the method can be applied using an arbitrary numerical solver of the
thermoelasticity system. We do not need to know how the system matrices and vectors
are calculated and how they are processed by the solver. The expensive calls of T' can be
avoided by other techniques which will be explained below.



4.3 The adjoint—equation method

Using the abbreviation u. = T'(z + cey), k fixed, we have

oT 1 1
a—Zk(z) = 1_1_{% g(T(z +eer) —T(z)) = 1_1_{% g(ua —u) =: bu.

The equations defininig v and u. read

M) (1) + K0 = o2)
M(z)9(0) = 6(z)
Alz)u = pF(z)+ BB(z)(T) (4.8)

and, respectively,

M(z +eep)dl(t) + K(z +eer)V(t) = g(z + cer)
M(z +cer)d(0) = 0(z+cex)
Alz+eer)u. = pF(z+cer) + BB(z+eer)d(T). (4.9)

Subtracting (4.8) and (4.9) and dividing by &, we obtain in the limit

M(2)89'(t) + K(2)69(t) = aa—zgk(z) — ZZ(ZW'(%E) — g—i(z)ﬂ(t) (4.10)
M(z)60(0) = g—i - ZZ(ZW(O) (4.11)
A(z)bu = p% + ,Bg%ﬁ(T) + BB(2)60(T) — %(z)u (4.12)

aT
the system for éu. In this way, 5 ou can be determined through the solution to the
Zk

semidiscrete thermoelastic system (4.10) — (4.12), provided that the derivatives of A, K,
M, B, 0, g and f with respect to z are available. To find T'(z), (4.10) — (4.12) must be

solved for k =1,...,m, i.e. for m times.

Next, we modify the descent method of section 4.3. We avoid the explicit use of 7'(z) by
an adjoint equation. To derive adjoint equation and gradient technique at the same time,
the well known Lagrange method is applied.

We consider the semidiscrete problem in the equivalent form

®(z,u) = min! (4.13)

M()0'() + K(2)9(t) = g(z), te(0,T] (4.14)

(Pr) M()0(0) = 6(2) (4.15)
Alz)u = pFu(z) + BB(2)¥(T) (4.16)

z e U (4.17)
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We define the Lagrange function for problem (P,) with Lagrange multipliers
v e CHO,T; R, y € RN and w € IR" by
Llu, z,950,y,w) = ®(z,u)+ (v, M(2)9" + K(2)0 — g(2)) L, (0,:1)
+ (¥, pFu(2) + BB(2)U(T) — A(2)u) g
+ (w, M(2)9(0) —0(z)). (4.18)

An optimal solution (u°, 2°,9°) of (Py) and the associated adjoint state (v°,y°, w°) fulfil
the first order necessary optimality conditions

L,(u?, 2%, 9% 0% % w)u = 0 Yu e RN (4.19)
Lo(u®, 2% 0% 0% % w9 = 0 v € C0,T; R (4.20)
(L, (u® 2%,0% 0% 4% w’), 2 — 2% > 0 Vz e U (4.21)
The evaluation of (4.19) gives
A*(2%)y° = &,(2°,u") (4.22)
From (4.20) it follows that
w’ = v°(0) (4.23)
— M (%) (1) + K*(20°(t) = 0, tef0,7), (4.24)
—M*(°0%T) = BB*(z")y°. (4.25)
Moreover, (4.21) implies
T
= 0P oviy OM o OK dg
s [ OO G + 0, T (0 = 5 e
oF 0B d0A a0 oM
20 0 _ 2O\ (00 0 0 )
b 00+ 802y = 220 e, 20y o), S ey g
> 0 Vh e UM — {2,

where the derivatives are taken at z°.

Now, we are able to modify our gradient method. Let (z*,u* ¥*) be an admissible triple
of (Py) and € > 0 an arbitrary number.

1. Determine v* and y* by solving

and

—M* (W () + K (Fwt) = 0 te[0,T)
—M(F)(T) = BB ()",
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2. Compute ¢ € IR™ from

T
o = oo+ / {01 (1), G D) + (H 1), T — ) d
oF 0B 0A 00 oM
k k _ kN ok ok k
b g+ B NT) = 5o — (wh ) 4 (A1), G D),

r=1,...,m.

3. Solve the linear programming problem
BF = arg min{{ec, h>|zk +h e U“d}.

If {¢, h*) > 0, then z* is an optimal solution of (P;) and the method is terminated.
In the other case we

4. determine
M = arg min{®(2F + ARF u(2" + ARF)) A € [0,1]}.

If A\; < &, then the process ends, else 2! = 2¥ 4 A*A* put 2% := 2F1 go to 1.

Using the adjoint equation method we have to solve the whole adjoint system of ther-
moelasticity only once for every calculation of a descent direction, while any explicit use
of T'(z) requires the evaluation of the (primal) system of thermoelasticity m + 1 times.
However, we must pay for that. We have to calculate derivatives of various matrices and
vectors with respect to z. This last procedure is not so expensive as the direct calculation
of the derivative of T

4.4 Calculation of matrix derivatives

In the gradient algorithm described in the previous subsection certain derivatives of ma-
trices or vectors with respect to z occur. We have to calculate them. The first idea is
to use finite difference approximations of these derivatives again. The second one is to
calculate them analytically.

4.4.1 Approximation by finite differences

The derivatives of the matrices and vectors M, K, A, B, g, F' and 6 with respect to z
can be approximated in the same way as in (4.7). For instance, the partial derivative of
the stiffness matrix K can with sufficient accuracy be determined by

oK 1, ) .
oo~ (K (e +ee) = K(2)) (4.26)

or any other scheme of numerical differentiation. This method can be recommended,
if the computation of these matrices is easy to handle (for instance accessible from the

FE-method).
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4.4.2 Analytical calculation of derivatives

We suppose that, for a given boundary I's(z), the algorithm constructing the grid of the
whole domain Q(z) is known in advance. This assumption is not fulfilled, if a multigrid
method with automatic grid generation underlies the FE-technique. Then the derivatives
of the system matrices and vectors can be calculated analytically. Here, we describe this
method by an example.

Let z (the boundary vector) be given, e.g., let the mesh points on I';(z) have the co-
ordinates (z;,z;), 1 = 1,...,m. We construct the remaining points of the mesh in the
following way. Let K € IN, [; = 2 , h, = %, hy = & and r; := l}—z (t=1,...,m).
Then we define grid points by (z;,l;-j), ¢ =1,...,m, 3 =1,..., K. Connecting (z;,1;-J),
j=1,....,K, foreveryi=1,....,m,and (z;,l;-5),e=1,...,m, for every j = 1,..., K,
we obtain a set of rectangular elements. Dividing each rectangle by two diagonals, we
arrive at the set of our finite elements (triangles) {7,}, p = 1,..., D, where D denotes the
number of elements. In Figure 2 a grid for K = m = 11 is shown.

14 T T T T

10

Figure 2: FEM-Grid

This diagonalization was used for symmetry to enhance better numerical stability for the
solution of the displacement wu.

D
The system matrices are sums of the element matrices. For instance, K = Y. K?, where
p=1

K? is the (n x n)-element matrix belonging to the triangle with number p. Let 77, i3, 7}
denote the numbers of mesh points forming this triangle, I, = {i{,45,45}. Then kf; =0,
if i ¢ I, or j ¢ I,. The nine nontrivial entries of K? are

kzzq = b?q,

l,Lg=1,2,3.
We obtain
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ok _ Lo
8zk B p=1 8zk
OK? by

L (—”) (4.27)

8zk 8zk l,g=1,2,3
% _ Z dby, Dz ; 86%% | (1.28)
aZk j=1 83:]- 8zk 8y]~ 6Zk

where [,q = 1,2,3. (b‘?q)l S 1,..., D are the element matrices, which can be
q=1,2,

determined as functions of the coordinates of the associated mesh points forming the
underlying triangle,

b?j = @p(fﬂlafﬂzafﬂ&ylayzays)-

These coordinates change if z varies . Hence, we need to find the partial derivatives of
with respect to z;,y;, 2 = 1,2, 3, as well as the partial derivatives of the node coordinates
with respect to zx, k=1,...,m.

@ is a rational function of the node coordinates. We get these formulas by calculating
k;; from (3.3), integrating exactly or applying a certain quadrature formula. The par-
tial derivatives of this rational function can be easily obtained if a routine of symbolic
calculation is used.

Next, we have to determine the derivatives of the node coordinates with respect to z.

14 T T T T

12 b

10 +

0 1 1 1 1
0 2 4 6 8 10

Figure 3: Changing nodes
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If z changes in direction e, then the nodes with coordinates (zx,y), y > 0 vary. Further-
more, all nodes on diagonals of quadrangles, having one corner at nodes with coordinates
(zg,y) (y arbitrary), are modified. In Figure 3 we see the changing nodes for k = 3 and
m = 9.

Let a quadrangle with the corners (z,,a), (23,b), (23,¢), (4,d) be given , where these
points denote the lower left, lower right, upper right, upper left corners, in that order.
Then the z—coordinate of the intersection of the two diagonals is

zo(b—¢) + xp(a — d)

:Ezf(:va,xb,a,b,c,d): a-l—b—c—d s (429)
while the y—coordinate is
ab— cd
= bed) = —, 4.30
y=nlabed =0 (1.30)

We regard one part of the grid essential for understanding the calculation of the desired
derivatives. The nodes are numbered as indicated in Fig. 4. We assume that the midpoint
(z5,y5) has the coordinates (x,ilx).

13
12

10 11

1 2

Figure 4: Grid part
Then the other nodes have the coordinates listed on in Table 1.
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‘ node ‘ x—coordinate ‘ y—coordinate
1 Thr_1 (Z — l)lk_l
2 T (L — 1)lk
3 Tk+1 (Z — 1)lk+1
4| Tp tlp_1
6 Th41 ’ﬂk+1
7 Tr-1 (l + 1>Zk_1
9 Tk+1 (Z + l)lk-}-l
10 f(xk 1,.1?k,(i— 1)lk_1,(i— 1)lk,ilk,ilk_1) T]((L—l)lk_l,(i— 1)lk,’ﬂk,’ﬂk_1)
11 (Ik,£k+1,( 1)lk,(l— 1)lk+1,ilk+1,ilk) T]((Z—l)lk,(i— 1)lk+1,ﬂk+1,ﬂk)
12 (.Z‘ £k+1,llk,ilk+1,(i+1)Zk+1,(i+1)lk> (le,llk+1,(l+1)lk+1,(L+ 1>Zk>
13 (xk 1,.1?}C,le 1,le,(L+1)lk,(L—|-1)lk 1) (le 1,le,(l+1)lk,(L—|-1)lk 1)

Now, the coordinates of the perturbed nodes associated to z+cej are easy to express (see

Table 1: Node coordinates

Table 2).
‘ node ‘ x—coordinate y—coordinate

1 Th—1 (L — 1)Zk_1
3 Tk+1 (L - 1)lk+1
4| wp_q ly_q
5 T Lli
6 Th41 ’ﬂk+1
7 Tr-1 (Z + 1)lk_1
9 Th+1 (Z + l)lk+1
10 | é(xp—1, 2k, (2 — D)lp—1, (2 — V)G, 0l5, ilk—1) | n((0 — V)lg—1, (1 — 1)I5, 013, ilk—1)
11 (xk’£k+17( 1>Zz’ (Z )Zk-l-la llk-l-la olj ) U((i — 1>Zz’ ( )Zk+1’ le+1’ il )
12 | &gy wpprs 005, tleyr, (04 Dlggr, 04+ D) | n(2ls, tleyr, (04 Dlgyr, (2 + 1))
13 | &(xhe1, Tk, tlmr, 25, (04 )G, (04 Dli—1) | n(ile—r, 25, (24 )G, (2 + 1)le—1)

Here we denote by [f the term (1 + i

In this way the formulas for all nodes with respect to z and to z + cey are written down

Table 2: Perturbed node coordinates

).

and the derivatives can be calculated.
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1. Varying nodes with coordinates (zy,ily), k=1,...,m,i=0,..., K:

zp(z+ceer) = (k—1)h

€

yp(z +eer) = il

dz,

A 4.31
P 0 (4.31)
Iy _ 9

2. Varying nodes at the diagonals right from (x5, ys):

(E(hs Thprs il g, (0 + Dlegr, (04 D)lk),m((0 = Dlig, (8 = Dl tles i),
k=1,....m—1,:=0,..., K — 1.

zp(z + cey)

'yp(z + Eek)

02y
6zk
yy
8zk

(Ul = (04 Dler) + @ (o0 = (0 + 1))

Trpliyr + Trpa [y

lpyr + 13
iliiler — (04 Dl (0 + 1)1

iy 4+ tleyr — (0 4+ Dl — 0+ 1)1

Il (20 + 1)

[l
hyhl
R (4.33)
(lk + lkt1)

(lk + lpg1)?

3. Varying nodes at the diagonals left from (x5, ys) :
(f(fﬂk—la Tk, ‘ilk_l, ‘ilk, (L + 1)lk, (L + 1)Zk_1>, T]((Z — 1)Zk, (L — 1)lk_1, ‘ilk_l,ilk)>,
k=2,....,m,¢t=0,..., K —1:

zp(z + cer)

yp(z + gek—l)

Jdz,
azk
Wy
6zk

{Ek_l(ilz — (l + 1)[2) + {Ek(ilk_l — (l + 1)lk_1)
it +ils — (1 + )5 — (i + 1)lx_s
Tl + 2pli—y
I+l
ile—ils — (i + D)+ 1)y
it +ils — (14 DE = (1 + 1)lp_q
li—1l5(21 4+ 1)

lealf
hyholyt
_ 1 135
(le + li—1)? (4.35)
B2, (2 + 1)
Byl (2t F 1) A
(et o)’ (4.36)
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4.5 Numerical examples

The numerical tests below were perfomed for the following set of parameters:

d = 10 cm
s = Hcm
5 = 15cm
5 =2
S, =8, = 10cm
Do(z) = 727 e SFTK

k = 0.18 cal cm'K™!
c = 01lcalg' K
p = T.5gem™®

ay = 0.12calcm™? s P K!
E = 216000 g cm™?

v = 0.3

ag = 0.0005 K™

Y5 is depicted in Fig. 5.
800 |

700

600

500

K 400

300

200

100

0 | | | |
cm

Figure 5: Outside temperature

The desired shape function § will be defined later. In our first approach, the derivatives
were approximated numerically by the relation (4.7), while a finite element multigrid
method was used to solve the system (2.6)—(2.8) of thermoelastic equations.

We used the software package FEMGP developed by the group of Prof. U. Langer (Linz,
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formally Chemnitz). To approximate §, the interval [0,d] was divided by 21 nodes. The
finest grid generated by the solver FEMGP contained more than 40 000 nodes.

In the gradient method of section 4.1 the direction hj of descent was determined by solving
the associated programming problem by a simplex routine.

The step size A was calculated in the following way (bisection method):

1. Put A =1.

2. Determine F'(z + Ahy).

3. While F(z + Ahg) > F(z) (STEP)
(a) If A > ¢, put A = 2, goto 3

4. Put Ay = A

The desired boundary vector Z and the initial boundary vector were chosen in the following
manner.

Example 1 Let u* = u*(zy, s(z1)) be the second component of the displacement vector
won I's at t = T, which belongs to the initial shape s = s(z;) = 10. The corresponding
deformed shape at ¢t = T is 5(x1) = s(x1) + u?*(x1). Owing to this, the optimal shape
should be s,,¢(x1) = 10, if this goal function § is prescribed in the objective functio-
nal (3.12). The optimal value is exactly zero. In the numerical implementation, s was
represented by the vector z = (z;), z; = 10, ¢ = 1,...,21. According to our notations, $
is realized by 2 = z + T'z. One optimal discrete solution must be z,,; = 10. We started
the gradient algorithm at the (very poor) initial guess zo = 2. After four iterations
a good approximation of the optimal solution was achieved (see Fig. 6 and Fig. 7).
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10.8

10.6 .
10.4 /\
10.2 _
10 20 —
Zopt ——

9.8 - ]
9.6 - ]
9.4 - .
9.2 ' ' ' '

Figure 6: Initial solution

10.8

10.6

T
|

10.4

10.2

10 = — 24 —

Zopt E—
9.8 - _

9.6 - _
9.4 _
9.2 | | | |

Figure 7: 4—th Iterate

Example 2 Let Z and, therefore, z,,; = 10, as before. To obtain a better initial guess,
we calculate T'Z and put zo := 2 — TZ. We cannot expect that Tzy = TZ.However, T zg
is certainly very close to Tz, so zy should be close to z,,:. Therefore, we have a better
initial guess as in the first example. The results are represented in Figure 8 and Figure 9.
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|
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Zopt E—
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Figure 8: Initial Iteration

10.8

10.6

T
|

10.4

10.2

10 24 —
Zopt E—

9.8 - ]
9.6
9.4 - ]
9.2 | | | |

Figure 9: 4-th Iteration

The gradient method using (4.7) worked well for all meaningful test problems. It is easy
to implement. Moreover, the very sophisticated FEMGP- solver could be used as a black
box. However, the method is time—consuming due to the numerous calls of FEMGP to
determine one gradient. The running time to solve the above examples on an HP 9000/730
amounted to some minutes.

Example 3 Now, we investigate a problem without knowledge of its solution. Let z = 10.

The optimal shape is expected to have a deepening centered at + = 5. The result after 4
iterations is represented in Figure 10.
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Figure 10: 4-th Iteration

Next, we are going to compare the gradient method and the adjoint equation method.
To this end, we used a simple FEM solver for the thermoelastic equations. This solver
is much slower than FEMGP, but it is well-suited to perform the comparison. We can
easily make the necessary modifications of the system matrices and vectors. Therefore,
we have done computations by applying the simple solver to the finite difference method
and to the adjoint equation method. In Figure 11, we compare the average difference

m
o= % > |zopt — 21| between the actual solution z; and the optimal solution z,,; for both

methods and for different discretization parameters m.

m | k o o
adj. equation | fin. difference
m | k o o
) . . method method
adj. equation | fin. difference
method method 10 | 1| 0.1245350000 | 0.1245350000
9111 0.1478715556 | 0.1478715556 10 2 0'0.70.74.86000 00082486000
) j ) 10 | 3 | 0.0252120000 | 0.0079911000
91 21 0.0349815556 | 0.1044260000 )
) 10 | 4 | 0.0068256000 | 0.0077411000
9131 0.0181947778 | 0.0490795556 e
) j 10 | 5 | 0.0089058000 | 0.0076202000
9141 0.0344570000 | 0.0301845556 o )
. 590 . oo 10 | 6 | 0.0010242000 | 0.0075012000
9151 0.0268452222 | 0.0036713333 )
o161l 00003841111 | 0.0050666667 10 | 7 | 0.0088280000 | 0.0081816000
T '3.35_57 3 '5_03_44 9 10 | 8 | 0.0048874000 | 0.0081176000
e 901 O 10 | 9 | 0.0000022000 | 0.0002741000
Time 6:53:16.8 9:06:31.7

Figure 11: Comparison

We observe that the iteration process of the two methods develops almost identically.
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The essential difference occurs in the calculation time. The running time of the finite
difference method is approximately 50 % larger than that of the adjoint equation method.
The theoretical assertions stated in section 4.2 are emphasized by the numerical results
given here. Our computational experience showed that for large m the adjoint equation
method should be preferred.

Moreover, we regarded a slightly modified adjoint equation method. The displacement
arising in our model problem occurs mainly at the upper boundary I's. Therefore, it is
natural to assume that only node points in a certain neighbourhood of the boundary I's
are moving, while the other part of the grid remains fixed. This approach is often used in
the literature. To compare this technique with moving the whole grid, we fixed all node

points with exeption of all (z;,y;) located at the boundary I's(z) or being cross points of
the diagonals of the quadrangle @) with @ N T'3(z) # 0.

We noticed that both methods generated the same defects o . This is due to the fact
that the computed gradients turned out to be almost identical. Even the differences of
running times (less than one minute) can be neglected. However, the use of a partial grid
may lower the needed storage capacity.
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