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1. Introduction. Continuing our efforts in the investigation of optimal control prob-
lems governed by the Navier-Stokes equations in presence of pointwise control and state
constraints (cf. [7, 8, 9, 10, 25]), we consider the following mixed control-state constrained
problem:

(1.1)











































min J(y, u) = 1
2

∫

Ω

|y − zd|2 dx+ α
2

∫

Ω

|u|2 dx

subject to

−ν∆y + (y · ∇)y + ∇p = u

div y = 0

y|Γ = g

a ≤ εu+ y ≤ b a.e.,

where α > 0 and ε > 0. Due to the mixed nature of the pointwise constraints, expressed
by the last relation of (1.1), the corresponding Lagrange multiplier is expected to be more
regular than in the state constrained case (cf. [8]). In fact, such a constraint can be
introduced as a way of regularization of the state constrained case and it is expected that,
as ε tends to zero, the solutions converge to the optimal solution of the state constrained
problem (see [21]).

Optimal control of partial differential equations in presence of state constraints is a very
challenging research field, mainly due to the difficult structure of the Lagrange multiplier
associated to the state constraints (see [2, 3, 4]). In the case of Navier-Stokes control, the
problem has been investigated in [8], where the measure structure of the multiplier was
studied.

This paper is a contribution to the numerical analysis of optimal control problems of the
Navier-Stokes equations with pointwise state constraints.
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2 2. PROBLEM STATEMENT AND EXISTENCE OF SOLUTION

The unconstrained and control-constrained optimal control problems of the Navier-Stokes
equations have been studied in many papers (see [1, 5, 7, 14, 15, 16, 18, 19, 25, 26]), where
optimality conditions and/or numerical methods were discussed. Moreover, we refer to the
detailed references in [13].

In contrast to this, only few papers consider associated problems with state constraints. To
our best knowledge, in flow control, only [8, 10, 11, 27] deal with state constraints. In [8] and
[11, 27] necessary optimality conditions are derived for the stationary and time dependent
problems, respectively. In [10] the numerical solution utilizing a penalized problem together
with a semi-smooth Newton method has been studied.

The novelty of our paper consists of a Lavrentiev type regularization of the state constraints.
Here we follow an approach introduced in [21, 22] to approximate the state constraints by
mixed control-state constraints. This approach permits to work with regular functions rather
than with measures, which are unavoidable for pure pointwise state constraints. In this way,
we are able to show regularity of Lagrange multipliers and to derive second order sufficient
optimality conditions. An additional novelty is the consideration of semi-smooth Newton
methods in this context. We set up a semi-smooth Newton algorithm for the numerical
solution of the control problem and prove local superlinear convergence of the method. All
this issues have not yet been considered in the literature.

The outline of the paper is as follows. In Section 2, the optimal control problem is stated and
existence of a global optimal solution is proved. In Section 3, the problem is reformulated as
a control constrained optimal control problem and first order necessary optimality conditions
are obtained. Sufficient conditions of second order type are the topic of Section 4. In Section
5, a semi-smooth Newton algorithm is stated and the superlinear convergence of the method
is proved. Reports on numerical experiments are summarized in Section 6.

2. Problem statement and existence of solution. Consider a bounded regular
domain Ω ⊂ R

d, d ∈ {2, 3}. Our objective is to characterize and find a solution (u∗, y∗) ∈
L2(Ω) × H1(Ω) of the following optimal control problem:
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

min J(y, u) = 1
2

∫

Ω

|y − zd|2 dx+ α
2

∫

Ω

|u|2 dx

subject to

−ν∆y + (y · ∇)y + ∇p = u

div y = 0

y|Γ = g

a ≤ εu+ y ≤ b a.e.,

where α > 0, ε > 0, zd is the desired state, a ≤ b ∈ L2(Ω) and g ∈ H
1/2
0 (Γ), with

H
1/2
0 (Γ) := {v ∈ H1/2(Γ) :

∫

Γ
v · ~n dΓ = 0} are given. The inequalities in the last line

of (2.1) have to be understood componentwise. We denote by (·, ·)X the inner product in
the Hilbert space X and by ‖·‖X the associated norm. The subindex is suppressed if the
L2-inner product or norm are meant. Hereafter, the bold notation stands for the product
of spaces. Additionally, we introduce the solenoidal space V = {v ∈ H1

0(Ω) : div v = 0}, the
closed subspace H := {v ∈ H1(Ω) : div v = 0} and the trilinear form c : H × H × H → R

defined by

c(u,w, v) = ((u · ∇)w, v).(2.2)
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Considering a force term f ∈ V ′, the weak formulation of the Navier-Stokes equations is
then given by

ν(∇y,∇v) + c(y, y, v) = 〈f, v〉V ′,V , for all v ∈ V(2.3)

γ0y = g,(2.4)

where ∇y =







∂1y1 . . . ∂dy1
...

. . .
...

∂1yd . . . ∂dyd






, (∇y,∇v) :=

d
∑

i=1

d
∑

j=1

(∂iyj , ∂ivj)L2(Ω) and γ0 : H1(Ω) →

H1/2(Γ) stands for the trace operator. It is nowadays standard to show existence of a
solution for (2.3)-(2.4). Also an appropriate estimate and uniqueness, for ν sufficiently large
or f sufficiently small, are obtained. The main results are summarized in the following
theorem.

Theorem 2.1. Let Ω ∈ R
d, d ∈ {2, 3}, be a bounded regular domain, f ∈ H−1(Ω) and

g ∈ H
1/2
0 (Γ). Then, there exists at least one solution for the non-homogeneous problem

(2.3)-(2.4), that satisfies the estimate

(2.5) ‖y − ŷ‖V ≤ 2

ν
‖F‖V ′ ,

where ŷ ∈ H is a function such that γ0ŷ = g and F = f +ν∆ŷ− (ŷ ·∇)ŷ. Moreover, if ‖ŷ‖
H

is sufficiently small, such that

|c(v, ŷ, v)| ≤ ν

2
‖v‖2

V for all v ∈ V

and ν2 > 4N ‖F‖V ′ , with N = sup
u,v,w∈V

|c(u,v,φ)|
‖u‖V ‖v‖V ‖w‖V

, then the solution is unique.

Proof. For the proof we refer to [23], pp. 178-180.

Next, we verify the existence of an optimal solution for our control problem. For that
purpose let us define the set of admissible solutions

Tad = {(y, u) ∈ H × L2(Ω) : (y, u) satisfies the restrictions in (2.1) }.

Theorem 2.2. If Tad is non-empty, then there exists an optimal solution for (2.1).

Proof. Assuming that there is at least one feasible pair for our problem, we take a minimizing
sequence {(yn, un)} in L2(Ω) × H1(Ω) and, considering the quadratic nature of the cost
functional, we get that {un} is uniformly bounded in L2(Ω).

¿From estimate (2.5) it follows that the sequence {yn} is also uniformly bounded in H1(Ω).
Therefore, we may extract a weakly convergent subsequence, also denoted by {(yn, un)}, such
that un ⇀ u∗ in L2(Ω) and yn ⇀ y∗ in H1(Ω). Due to the weak sequential continuity of the
nonlinear form (cf. [12], pg. 286), it follows that c(yn, yn, v) → c(y∗, y∗, v). Consequently,
due also to the linearity and continuity of the other terms involved, the limit (y∗, u∗) satisfies
the state equations.

Since the set C := {v ∈ L2(Ω) : a ≤ v ≤ b a.e.} is closed and convex, it is weakly closed.
Hence, from the linearity and continuity of the mapping (y, u) → εu + y, it follows that
εu∗ + y∗ ∈ C. Taking into consideration that J(y, u) is weakly lower semicontinuous, the
result follows in a standard way.
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3. First-order necessary optimality conditions. Let us consider the set

U = {u ∈ L2(Ω) : ‖u‖ <
(

ν2 − 4N ‖ν∆ŷ − (ŷ · ∇)ŷ‖V ′

)

/(4N ĉ)},

where ĉ denotes the embedding constant of L2(Ω) into V ′ and ŷ is a suitable velocity profile
from Theorem 2.1. According to Theorem 2.1 there exists, for each u ∈ U on the right hand
side of (2.3), a unique solution of the Navier-Stokes equations. Introducing the control-to-
state operator G : U → H that assigns to each u ∈ U ⊂ L2(Ω) the corresponding Navier-
Stokes solution y(u), and using the composite mapping G = I ◦ G, where I : H → L2(Ω)
stands for the continuous compact injection, problem (2.1) can be expressed in a reduced
form as

(P)















minu∈U J(u) = 1
2

∫

Ω

|Gu− zd|2 dx+ α
2

∫

Ω

|u|2 dx

subject to

a ≤ εu+ Gu ≤ b a.e. in Ω.

Since U is open, we cannot expect in general that (P) admits a global solution. However, in
what follows, we concentrate on certain local solutions rather than to consider exclusively
global ones. Therefore, we are justified to assume u∗ ∈ U below.

In the sequel we will frequently utilize the condition

(3.1) ν >M(y∗),

with M(y) := sup
v∈V

|c(v,y,v)|
‖v‖2

V

, which is responsible for the ellipticity of the linearized equations

(see Lemma 3.1 below). Condition (3.1) is immediately satisfied for all pairs (y(u), u) that
fulfill the hypotheses of Theorem 2.1 (see [7, Remark 3.1]). In particular, it holds for all
pairs (y(u), u) with u ∈ U.

Lemma 3.1. Let u ∈ U and y := G(u). The control-to-state operator G is twice Fréchet
differentiable at u and its derivatives w := G′(u)h and z := G′′(u)[h]2 are given by the
unique solutions of the systems:

−ν∆w + (w · ∇)y + (y · ∇)w + ∇π = h

div w = 0

w|Γ = 0

(3.2)

and

−ν∆z + (z · ∇)y + (y · ∇)z + ∇̺ = −2(w · ∇)w

div z = 0

z|Γ = 0,

(3.3)

respectively.

Proof. Let us begin by considering system (3.2). Its variational formulation is given by

a1(w, φ) := ν(∇w,∇φ) + c(w, y, φ) + c(y, w, φ) = (h, φ),

for all φ ∈ V. Since for all pairs (y, u) with u ∈ U condition (3.1) holds (see [7, Remark 3.1]),
coercivity of a1(·, ·) and, consequently, the existence and uniqueness of the solution w,
follows.
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Let us denote the increment by ȳ := yu+h − yu, where yu := G(u). Considering that

(3.4) c(yu+h, yu+h, φ) − c(yu, yu, φ) = c(ȳ, ȳ, φ) + c(yu, ȳ, φ) + c(ȳ, yu, φ),

it can be verified that ȳ is solution of

(3.5) ν(∇ȳ,∇φ) + c(ȳ, ȳ, φ) + c(ȳ, yu, φ) + c(yu, ȳ, φ) = (h, φ), for all w ∈ V.

Taking φ = ȳ as test function in (3.5) yields

(h, ȳ) = ν ‖ȳ‖2
V + c(ȳ, yu, ȳ) ≥ ν ‖ȳ‖2

V −M(yu) ‖ȳ‖2
V

and therefore

(3.6) ‖ȳ‖V ≤ κσ(y) ‖h‖ ,

where κ denotes the Poincaré inequality constant and σ(y) := 1
ν−M(y) . Considering now

ỹ = yu+h − yu − w, we obtain the following equation:

(3.7) ν(∇ỹ,∇φ) + c(yu+h, yu+h, φ) − c(yu, yu, φ)

− c(w, yu, φ) − c(yu, w, φ) = 0, for all w ∈ V.

Using (3.4) and choosing ỹ as test function in (3.7) we get that

ν ‖ỹ‖2
V − c(ỹ, ỹ, yu) = −c(ȳ, ȳ, ỹ),

which together with (3.6) and condition (3.1) yields

(3.8) ‖ỹ‖V ≤ Nκ2σ3(y) ‖h‖2 .

Hence, the Fréchet differentiability follows. Moreover, since condition (3.1) holds, existence
and uniqueness of solutions for equations (3.2) is verified. Therefore, the inverse operator
exists for all u ∈ U as a linear continuous operator and, from the implicit function theorem,
the operator G is of class C2 from U to H. Taking the derivative on both sides of (3.2)
yields (3.3) (see [6], p. 14).

The idea now consists in reformulating problem (P) in a new variable v := εu + G(u) and
treat it as a control-constrained optimal control problem. In order to express u as a function
of v we consider the operator

F : L2(Ω) × L2(Ω) → L2(Ω)

(v, u) 7→ εu+ G(u) − v

and the solvability of the equation

F (v, u) = 0.

To justify existence and uniqueness of u for each v ∈ L2(Ω), we will consider a L2 neighbor-
hood of the optimal control u∗ contained in U . From the implicit function theorem (cf. [28])
it suffices, since F (v, u) is clearly defined in a neighborhood of u∗ and v∗ = εu∗ + G(u∗), to
verify existence and continuity of the mapping Fu(v∗, u∗)−1 from L2(Ω) to L2(Ω).
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¿From the open mapping theorem, existence and continuity of Fu(v∗, u∗)−1 holds if the
operator Fu(v∗, u∗) = ε+ G′(u∗) is bijective. Let us therefore consider the equation

(3.9) (ε+ G′(u∗))h = ϕ,

with ϕ ∈ L2(Ω). It is easy to see that G′(u∗) = I ◦G′(u∗) is compact due to the embedding
I : H1(Ω) → L2(Ω). Since ε > 0 and ν >M(y∗), it can be verified that ker(ε+G′(u∗)) = {0}
and consequently ε is not an eigenvalue of −G′(u∗). Applying Fredholm’s alternative, we get
the existence of a unique solution h ∈ L2(Ω) for (3.9) and consequently the existence and
continuity of Fu(v∗, u∗)−1.

Therefore, there are constants r, r0 > 0 such that for each v ∈ L2(Ω) with ‖v − v∗‖ ≤ r0,
there exists a unique u := K(v) with ‖u− u∗‖ ≤ r and

(3.10) εK(v) + G(K(v)) = v.

Moreover, since F is twice continuously Fréchet differentiable, the implicit function theorem
(cf. [28]) also implies that K is twice continuously Fréchet differentiable. Let us denote
by K ′′(v)[ξ, η] the second derivative of K in directions ξ and η and introduce K ′′(v)[ξ]2 :=
K ′′(v)[ξ, ξ]. Taking the first and second derivatives on both sides of (3.10) in direction ξ
yields

(ε+ G′(K(v)))K ′(v)ξ = ξ,(3.11)

(ε+ G′(K(v)))K ′′(v)[ξ]2 = −G′′(K(v))[K ′(v)ξ]2,(3.12)

which implies that

K ′(v) = (ε+ G′(K(v)))−1

and

K ′′(v)[ξ]2 = −(ε+ G′(K(v)))−1G′′(K(v))[K ′(v)ξ]2,

respectively.

Locally around u∗, our control problem can therefore be equivalently formulated as:

(Pr)



















min J (v) =: J(y(K(v)),K(v))

subject to

a ≤ v ≤ b a.e.

v ∈ Br0
(v∗).

Theorem 3.2. Let u∗ be a local optimal solution of (P). Then there exist Lagrange
multipliers λ ∈ V, q ∈ L2

0(Ω) and µa, µb ∈ L2(Ω) such that

−ν∆y∗ + (y∗ · ∇)y∗ + ∇p = u∗

div y∗ = 0

y∗|Γ = g,

(3.13)

−ν∆λ− (y∗ · ∇)λ+ (∇y∗)Tλ+ ∇q = zd − y∗ + µa − µb

div λ∗ = 0

λ∗|Γ = 0,

(3.14)
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(3.15) λ− αu∗ = ε(µb − µa),

a ≤ εu+ y∗ ≤ b,

µa, µb ≥ 0,

(µai
, ai − εu∗i − y∗i ) = (µbi

, bi − εu∗i − y∗i ) = 0, for i = 1, 2,

(3.16)

hold in variational sense.

Proof. Since u∗ is a locally optimal solution of (P), we get for some r > 0

J(y∗, u∗) ≤ J(y(u), u),

for all u ∈ Br(u
∗) with a ≤ εu+ y(u) ≤ b. Equivalently, since u = K(v) holds locally,

J (v∗) ≤ J (v),

for all v ∈ Br0
(v∗) with a ≤ v ≤ b, and for an appropriate constant r0 > 0.

Therefore, the following first order necessary condition follows

(3.17) J ′(v∗)(v − v∗) ≥ 0, ∀a ≤ v ≤ b

Applying the chain rule, the derivative of J (v∗) in any direction ξ ∈ L2(Ω) is given by

(J ′(v∗), ξ) = (y∗ − zd,G′(u∗)K ′(v∗)ξ) + α(u∗,K ′(v∗)ξ),(3.18)

which, by h := K ′(v∗)ξ, yields

(J ′(v∗), ξ) = (y∗ − zd,G′(u∗)h) + α(u∗, h).

Denoting by µ ∈ L2(Ω) the Riesz representative of −J ′(v∗) and using explicitly the deriva-
tive of K we obtain

(µ, ξ) = (µ, (ε+ G′(u∗))h) = ε(µ, h) + (µ,G′(u∗)h).

Therefore, equation (3.18) is equivalent to

(3.19) (y∗ − zd + µ,G′(u∗)h) + (αu∗ + εµ, h) = 0.

We now introduce the adjoint system of equations

−ν∆λ− (y∗ · ∇)λ+ (∇y∗)Tλ+ ∇q = zd − y∗ − µ

div λ∗ = 0

λ∗|Γ = 0.

(3.20)

Since, by hypothesis ν >M(y∗), the ellipticity of the adjoint operator can be easily verified
and, therefore for zd − y∗ − µ ∈ L2(Ω), there exists a unique solution λ ∈ V for the adjoint
system.

Consequently, equation (3.19) can be rewritten as

(3.21) λ− αu∗ = εµ.
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Utilizing the decomposition µ = µb − µa, with

µb := µ+ =
1

2
(µ+ |µ|)

µa := µ− =
1

2
(−µ+ |µ|),

where |µ| = (|µ1|, |µ2|)T , the optimality condition (3.17) can be rewritten as

(J ′(v∗), v∗) = min
a≤v≤b

(µa − µb, v) = min
a≤v≤b

{(µa,1, v1) − (µb,1, v1) + (µa,2, v2) − (µb,2, v2)}.

By fixing the second component of the new control variable v2 = v∗2 and considering the
mutual disjoint sets {x : µa,1(x) > 0} and {x : µb,1(x) > 0}, we obtain that

(J ′(v∗), v∗) = (µa,1, a1) − (µb,1, b1) + (µa,2, v
∗
2) − (µb,2, v

∗
2)

and, consequently,

(µa,1, a1 − εu∗1 − y∗1) − (µb,1, b1 − εu∗1 − y∗1) = 0.

Fixing now the first component of v and proceeding in a similar manner we get that

(µa,2, a2 − εu∗2 − y∗2) − (µb,2, b2 − εu∗2 − y∗2) = 0.

Taking into account that, by definition, µa, µb ≥ 0 componentwise, the complementarity
system (3.16) follows.

Remark 3.3. Notice that the existence of µa, µb cannot be deduced in a standard way from
Kuhn-Tucker theorems in Banach spaces, since the cone of non-negative functions in L2(Ω)
has an empty interior and we work just in this constraint space.

4. Second order sufficient condition. Next, we turn to second order sufficient op-
timality conditions for problem (P). Following [22], the idea consists again in utilizing the
second order sufficient optimality properties of the pure control constrained problem (Pr)
and translate them to the original setting.

We begin by verifying the relation between the Lagrangian

L(y, u, λ) =
1

2
‖y∗ − zd‖2

+
α

2
‖u‖2

+ ν(∇λ,∇y) + c(y, y, λ) − (λ, u)

and the second derivative of the reduced functional J .
Lemma 4.1. The second derivative of the reduced cost functional in direction ξ satisfies

(4.1) J ′′(v∗)[ξ]2 = L′′(y∗, u∗, λ)(w, h)2

where h = K ′(v∗)ξ and w is the solution to (3.2) with h on the right hand side.

Proof. Considering the reduced cost functional and differentiating it twice in direction ξ we
get

J ′′(v∗)[ξ]2 = J ′′(K(v∗))[K ′(v∗)ξ]2 + J ′(K(v∗)) K ′′(v∗)[ξ]2

= ‖G′(K(v∗))K ′(v∗)ξ‖2
+ (y(K(v∗)) − zd,G′′(K(v∗))[K ′(v∗)ξ]2)

+ (y(K(v∗)) − zd,G′(K(v∗))K ′′(v∗)ξ2) + α ‖K ′(v∗)ξ‖2
+ α(K(v∗),K ′′(v∗)ξ2),
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which, by the relations h = K ′(v∗)ξ, u∗ = K(v∗), y∗ = y(K(v∗)), w = G′(u∗)h and
z = G′′(u∗)[h]2, yields

(4.2) J ′′(v∗)[ξ]2 = ‖w‖2
+ (y∗ − zd, z)

+ (y∗ − zd,G′(u∗)K ′′(v)ξ2) + α ‖h‖2 + α(u∗,K ′′(v∗)ξ2).

¿From the optimality condition (3.19) we get

(y∗ − zd,G′(u∗)K ′′(v∗)ξ2) + α(u∗,K ′′(v∗)ξ2) = −(µ, (ε+ G′(u∗))K ′′(v∗)ξ2),

which implies that

J ′′(v∗)[ξ]2 = ‖w‖2
+ α ‖h‖2

+ (y∗ − zd, z) − (µ, (ε+ G′(u∗))K ′′(v∗)ξ2)

Additionally, by (3.12) we find

−(µ, (ε+ G′(u∗))K ′′(v∗)ξ2) = (µ, z).

¿From (3.14) we get, using integration by parts and equation (3.3), that

(y∗ − zd, z) − (µ, (ε+ G′(u∗))K ′′(v∗)[ξ]2) = ν(∆z, λ) − c(y∗, z, λ) − c(z, y∗, λ)

= 2c(w,w, λ).

We thus obtain

J ′′(v∗)[ξ]2 = ‖w‖2
+ α ‖h‖2

+ 2((w · ∇)w, λ).

On the other hand, computing the first and second derivatives of the Lagrangian yields

L′(y∗, u∗, λ)(w, h) = (y∗ − zd, w) + α(u∗, h) + ν(∇λ,∇w)

+ c(y∗, w, λ) + c(w, y∗, λ) − (λ, h)

L′′(y∗, u∗, λ)(w, h)2 = ‖w‖2
+ α ‖h‖2

+ 2c(w,w, λ),

and consequently

(4.3) J ′′(v∗)[ξ]2 = L′′(y∗, u∗, λ)(w, h)2 = ‖w‖2 + α ‖h‖2 + 2c(w,w, λ),

where w is solution of (3.2) with h on the right hand side.

Let us now introduce the set of strongly active constraints

Aτ,i := {x ∈ Ω : |µi(x)| ≥ τ}, i = 1, . . . , d,

and the critical cone

C̃τ =











v ∈ L2(Ω) :

vi(x) = 0 if x ∈ Aτ,i

vi(x) ≥ 0 if v∗i (x) = ai, x 6∈ Aτ,i

vi(x) ≤ 0 if v∗i (x) = bi, x 6∈ Aτ,i











.

For the investigation of optimality for a given stationary pair (y∗, u∗) let us hereafter assume
that the following second order condition holds: there exist τ > 0, δ > 0 such that

(SSC) L′′(y∗, u∗, λ)(w, h)2 ≥ δ ‖h‖2
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for all (w, h) ∈ Cτ , where Cτ consists of all pairs (w, h) ∈ V ×L2(Ω) such that εh+w ∈ C̃τ

and

−ν∆w + (w · ∇)y∗ + (y∗ · ∇)w + ∇π = h

div w = 0

w|Γ = 0.

(4.4)

Theorem 4.2. If u∗ is a stationary point of (P) and (SSC) holds for some δ > 0, τ > 0,
then there exist constants ρ > 0 and σ > 0 such that

(4.5) J(y, u) ≥ J(y∗, u∗) + σ ‖u− u∗‖

for all pairs (y, u) such that y = G(u), a ≤ εu+ y ≤ b and ‖u− u∗‖ ≤ ρ.

Proof. Utilizing (3.11), (4.1) and (SSC) it follows that

J ′′(v∗)[ξ]2 ≥ δ
∥

∥(ε+ G′(u∗))−1ξ
∥

∥

2
,

which using the continuity of the mapping (ε+ G′(u∗)) yields

J ′′(v∗)[ξ]2 ≥ δ

(

1

‖ε+ G′(u∗)‖ ‖ξ‖
)2

= δ ‖ε+ G′(u∗)‖−2 ‖ξ‖2 = δ̃ ‖ξ‖2 .

Using the second order sufficient conditions for the reduced problem (cf. [24], pg. 190), we
get the existence of constants ρ̃ > 0, σ̃ > 0 such that

J (v) ≥ J (v∗) + σ̃ ‖v − v∗‖2 ,

for all a ≤ v ≤ b, ‖v − v∗‖ ≤ ρ̃.

By the implicit function theorem there exist constants r, r0 > 0 such that for all v ∈ L2(Ω)
with ‖v − v∗‖ ≤ r0, there is a u = K(v) which satisfies ‖u− u∗‖ ≤ r.

Taking ρ̂ = min(ρ̃, r0) we have that ‖u− u∗‖ ≤ r and

J(u) ≥ J(u∗) + σ̃ ‖v − v∗‖2
(4.6)

= J(u∗) + σ̃ ‖ε(u− u∗) + G(u) − G(u∗)‖2 .(4.7)

¿From the quadratic nature of the Navier-Stokes nonlinear term we obtain, using Taylor
expansion, that

G(u) − G(u∗) = G′(u∗)(u− u∗) +
1

2
G′′(u∗)[u− u∗]2,

which, considering (4.7) implies that

J(u) ≥ J(u∗) + σ̃

∥

∥

∥

∥

(ε+ G′(u∗))(u− u∗) +
1

2
G′′(u∗)(u− u∗)2

∥

∥

∥

∥

2

(4.8)

≥ J(u∗) + σ̃

(

‖(ε+ G′(u∗))(u− u∗)‖ −
∥

∥

∥

∥

1

2
G′′(u∗)(u− u∗)2

∥

∥

∥

∥

)2

.(4.9)
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Since the operator (ε+ G′(u∗))−1 is linear and continuous we get that

‖u− u∗‖ =
∥

∥(ε+ G′(u∗))−1(ε+ G′(u∗))(u− u∗)
∥

∥

≤
∥

∥(ε+ G′(u∗))−1
∥

∥ ‖(ε+ G′(u∗))(u− u∗)‖

which implies that

‖(ε+ G′(u∗))(u− u∗)‖ ≥ 1

‖(ε+ G′(u∗))−1‖ ‖u− u∗‖ = C̄ ‖u− u∗‖ .

Additionally, possibly by reducing r,
∥

∥

∥

∥

1

2
G′′(u∗)[u− u∗]2

∥

∥

∥

∥

≤ C̄

2
‖u− u∗‖ .

Therefore, we get that

J(u) ≥ J(u∗) + σ̃(C̄ ‖u− u∗‖ − C̄

2
‖u− u∗‖)2 = J(u∗) + σ ‖u− u∗‖2

with σ := σ̃C̄2

4 and, consequently, the local optimality of u∗ and the quadratic rate follow.

Remark 4.3. For the analysis of second order numerical methods, a stronger condition is
needed (see [19, 24]): there exist constants τ > 0, δ > 0 such that

(SSC) L′′(y∗, u∗, λ)(w, h)2 ≥ δ ‖h‖2

for all pairs (w, h) ∈ V × L2(Ω) that solve (4.4) and satisfy εhi + wi = 0 on Aτ,i, for
i = 1, . . . , d.

5. Semi-smooth Newton method. In this section we propose a semi-smooth Newton
method for the numerical solution of (P). The infinite dimensional method is applied to
the optimality system (3.13)-(3.16) and superlinear convergence is proved. Additionally, the
close relationship between semi-smooth Newton and primal-dual active set methods (see
[17]) allows a practical formulation of the algorithm in terms of active and inactive sets.

We begin by reformulating the complementarity system (3.16) as the following operator
equation

(5.1) µ = max(0, µ+ c(v − b)) + min(0, µ+ c(v − a))

for all c > 0. Equation (5.1) suggests an update strategy based on active and inactive sets
information.

Definition 5.1. Let X and Z be Banach spaces and D ⊂ X an open subset. The mapping
F : D → Z is called Newton differentiable in the open subset U ⊂ D if there exists a mapping
Ψ : U → L(X,Z) such that

lim
h→0

1

‖h‖ ‖F (x+ h) − F (x) − Ψ(x+ h)h‖ = 0

for every x ∈ U.

Since the max(0, ·) and min(0, ·) functions are Newton differentiable (see [7, 17]) from
Lp(Ω) → Lq(Ω), with q < p, the application of the semi-smooth Newton method is justified
with the special choice c := α/ε2 (see Theorem 5.5 below). The complete algorithm is
defined through the following steps.
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Algorithm 5.2.

1. Initialize the variables u0 ∈ L2(Ω), y0 ∈ V , µ0 = 0 and set k = 1.
2. Until a stopping criterion is satisfied, set for i = 1, . . . , d,

An
bi

= {x : µn−1
i +

α

ε2
(

εun−1
i + yn−1

i − bi
)

> 0},

An
ai

= {x : µn−1
i +

α

ε2
(εun−1

i + yn−1
i − ai) < 0},

In
i = Ω\(An

bi
∪ An

ai
).

and find the solution (y, p, λ, q) of:

−ν∆yi + yn−1
1 ∂1yi + yn−1

2 ∂2yi + y1∂1y
n−1
i + y2∂2y

n−1
i

+∂ip = yn−1
1 ∂1y

n−1
i + yn−1

2 ∂2y
n−1
i +











1
ε (bi − yi) on An

bi

λi

α on In
i

1
ε (ai − yi) on An

ai

div y = 0

y|Γ = g

(5.2)

−ν∆λi +
1

ε
λi − y1∂1λ

n−1
i − y2∂2λ

n−1
i −yn−1

1 ∂1λi − yn−1
2 ∂2λi + λ1∂iy

n−1
1

+λ2∂iy
n−1
2 + λn−1

1 ∂iy1 + λn−1
2 ∂iy2+∂iq = zd,i − yi − yn−1

1 ∂1λ
n−1
i

−yn−1
2 ∂2λ

n−1
i + λn−1

1 ∂iy
n−1
1 + λn−1

2 ∂iy
n−1
2 +











α
ε2 (bi − yi) on An

bi

λi

ε on In
i

α
ε2 (ai − yi) on An

ai

div λ = 0

λ|Γ = 0.

(5.3)

Set (yn, pn, λn, qn) = (y, p, λ, q), un
i =











1
ε (bi − yn

i ) on An
bi

λn
i

α on In
i

1
ε (ai − yn

i ) on An
ai
.

, µn = 1
ε (λn − αun),

and goto step 2.

Note that the system to be solved in step (2) corresponds to the optimality system of the
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following optimal control problem

(5.4)







































































































min
δx∈V ×C̃n

1
2 〈L′′(xn−1, λn−1)δx, δx〉 + 〈L′(xn−1, λn−1), δx〉

+ α
2ε2

d
∑

i=1

∫

An
bi

∣

∣bi − yn−1
i − δyi

∣

∣

2
dx+ α

2ε2

d
∑

i=1

∫

An
ai

∣

∣ai − yn−1
i − δyi

∣

∣

2
dx

+1
ε

d
∑

i=1

∫

An
bi

λn−1
i · δyi

dx+ 1
ε

d
∑

i=1

∫

An
ai

λn−1
i · δyi

dx

subject to

−ν∆δyi
+ yn−1

1 ∂1δyi
+ yn−1

2 ∂2δyi
+ δy1

∂1y
n−1
i + δy2

∂2y
n−1
i + ∂ip

n

= ν∆yn−1
i − yn−1

1 ∂1y
n−1
i − yn−1

2 ∂2y
n−1
i +











1
ε (bi − yn−1

i − δyi
) on An

bi

un−1
i + δui

on In
i

1
ε (ai − yn−1

i − δyi
) on An

ai

div δy = 0

δy|Γ = −yn−1|Γ + g,

where xn = (yn, un), δx = xn − xn−1 and

C̃n :=
{

h ∈ L2(Ω) : hi(x) = 0 for x ∈ An
bi
∪ An

ai
, i = 1, . . . , d

}

.

Problem (5.4) corresponds to a quadratic control problem with affine constraints. Existence
and uniqueness of a solution, as well as existence of Lagrange multipliers will be verified
next.

Theorem 5.3. Let u∗ ∈ U be a stationary point of (P) that satisfies the second order
condition (SSC). If In

i ⊂ Iτ,i, with Iτ,i := Ω\Aτ,i, i = 1, . . . , d, and
∥

∥yn−1 − y∗
∥

∥

V
,

∥

∥λn−1 − λ∗
∥

∥

V
are sufficiently small, then there exists a unique solution for system (5.2)-

(5.3).

Proof. Existence of Lagrange multipliers for (5.4) follows from the satisfaction of the regular
point condition (see [20]), which in the present case is fulfilled if there exists a unique weak
solution w ∈ V of

−ν∆w + (w · ∇)yn−1 + (yn−1 · ∇)w + ∇π = h

div w = 0

w|Γ = 0

(5.5)

with εh + w ∈ C̃n. Multiplying both sides of (5.5) by w, existence and uniqueness follow
from the Lax-Milgram theorem if the coercivity condition ν > M(yn−1) holds. From the
definition of M(·) we get that

ν −M(yn−1) = ν − sup
w∈V

|c(w, yn−1, w)|
‖w‖2

V

≥ ν − sup
w∈V

|c(w, yn−1 − y∗, w)|
‖w‖2

V

−M(y∗)

≥ ν −M(y∗) −N
∥

∥yn−1 − y∗
∥

∥

V
.

Choosing
∥

∥yn−1 − y∗
∥

∥

V
≤ ν−M(y∗)

2N , yields

ν −M(yn−1) ≥ ν −M(y∗)

2
> 0
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and, thus, each solution of (5.4) satisfies the optimality system (5.2)-(5.3).

On the other hand, to see that a solution to (5.2)-(5.3) corresponds to the solution of (5.4)
a second order condition has to hold. Denoting by L(δy, δu) the Lagrangian of (5.4), the
second order condition can be stated as follows: there exists a constant ρ > 0 such that

(5.6) L′′(δy, δu)(w, h)2 ≥ ρ ‖h‖2 ,

for all (w, h) ∈ V × L2(Ω) that solve (5.5) and satisfy εh + w ∈ C̃n. Taking such a (w, h)
arbitrary but fix, we introduce the decomposition (w, h) = (ξ, h̄) + (ψ, h) with ξ ∈ V weak
solution of

−ν∆ξ + (ξ · ∇)y∗ + (y∗ · ∇)ξ + ∇π1 = h̄

div ξ = 0

ξ|Γ = 0,

(5.7)

with h̄i :=











−1
εξi on An

bi

hi on In
i

−1
εξi on An

ai

, for i = 1, . . . , d, and ψ ∈ V weak solution of

−ν∆ψ + (ψ · ∇)yn−1 + (yn−1 · ∇)ψ + ∇π2

= −((yn−1 − y∗) · ∇)ξ − (ξ · ∇)(yn−1 − y∗) + h

div ψ = 0

ψ|Γ = 0

(5.8)

with hi =











−1
εψi on An

bi

0 on In
i

−1
εψi on An

ai

, for i = 1, . . . , d. We therefore get that (ξ, h̄) solves (5.7) and

satisfies εh̄+ ξ ∈ C̃n. From (4.3) and using Cauchy-Schwarz we thus obtain

L′′(δy, δu)(w, h)2 ≥ ‖ξ‖2 + α
∥

∥h̄
∥

∥

2 − 2 ‖ξ‖ ‖ψ‖ − 2α
∥

∥h̄
∥

∥ ‖h‖ + 2c(w,w, λn−1),

which implies, using the properties of the trilinear form, that

L′′(δy, δu)(w, h)2 ≥ L′′(y∗, u∗, λ∗)(ξ, h̄)2 − 2 ‖ξ‖ ‖ψ‖ − 2α
∥

∥h̄
∥

∥ ‖h‖
− 2N ‖ξ‖2

V

∥

∥λn−1 − λ∗
∥

∥

V
− 4N ‖ξ‖V ‖ψ‖V

∥

∥λn−1
∥

∥

V
− 2N ‖ψ‖2

V

∥

∥λn−1
∥

∥

V
.

¿From equations (5.7) and (5.8) it can be verified that the following estimates hold

‖ξ‖V ≤ κσ
∥

∥h̄
∥

∥(5.9)

‖ψ‖V ≤ 4Nκσ2
∥

∥yn−1 − y∗
∥

∥

V

∥

∥h̄
∥

∥ ,(5.10)

with σ := (ν −M(y∗))−1.

Since by hypothesis u∗ satisfies (SSC) and In
i ⊂ Iτ,i, it follows that εh̄+ ξ = 0 on Aτ,i and,

using estimates (5.9), (5.10),

L′′(δy, δu)(w, h)2 ≥ δ
∥

∥h̄
∥

∥

2 − 8Nκ4σ3
∥

∥yn−1 − y∗
∥

∥

V

∥

∥h̄
∥

∥

2 − 8

ε
αNκ2σ2

∥

∥yn−1 − y∗
∥

∥

V

∥

∥h̄
∥

∥

2

−2Nκ2σ2
∥

∥λn−1 − λ∗
∥

∥

V

∥

∥h̄
∥

∥

2 − 16N 2κ2σ3
∥

∥λn−1
∥

∥

V

∥

∥yn−1 − y∗
∥

∥

V

∥

∥h̄
∥

∥

2

−32N 3κ2σ4
∥

∥λn−1
∥

∥

V

∥

∥yn−1 − y∗
∥

∥

2

V

∥

∥h̄
∥

∥

2
.
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Choosing
∥

∥yn−1 − y∗
∥

∥

V
and

∥

∥λn−1 − λ∗
∥

∥

V
sufficiently small such that

ρ := δ − 2Nκ2σ2
∥

∥λn−1 − λ∗
∥

∥

V
− 8Nκ2σ2

∥

∥yn−1 − y∗
∥

∥

V

[

κ2σ + α/ε

+2Nσ
∥

∥λn−1
∥

∥

V
+ 4N 2σ2

∥

∥λn−1
∥

∥

V

∥

∥yn−1 − y∗
∥

∥

V

]

> 0,

condition (5.6) is satisfied.

Therefore, system (5.2)-(5.3) is uniquely solvable since it corresponds to the solution of a
linear quadratic control problem with convex objective.

Remark 5.4. ¿From the definition of the inactive sets, it can be verified that the condition
In

i ⊂ Iτ,i holds for
∥

∥yn−1 − y∗
∥

∥

V
and

∥

∥λn−1 − λ∗
∥

∥

V
sufficiently small.

By considering the state variable y and the newly defined control variable v, the optimal
control problem (P) can locally also be expressed as the following control constrained optimal
control problem

(5.11)











































min J(y, v) = 1
2

∫

Ω

|y − zd|2 dx+ α
2ε2

∫

Ω

|v|2 dx− α
ε2

∫

Ω

v y dx+ α
2ε2

∫

Ω

|y|2 dx

subject to

−ν∆y + 1
εy + (y · ∇)y + ∇p = 1

εv

div y = 0

y|Γ = g

a ≤ v ≤ b a.e.,

The presence of the mixed term α
ε2

∫

Ω

v y dx in the cost functional is responsible for a different

problem structure, which does not allow the application of already known results about
convergence of the semi-smooth Newton method for control constrained optimal control
problems (see [9, 17]).

In the next theorem sufficient conditions for the local superlinear convergence of the semi-
smooth Newton method are stated.

Theorem 5.5. Let u∗ ∈ U be a stationary point of (P) that satisfies (SSC). If ‖λ∗‖V <
α1/2

4ε (ν − M(y∗))
(

ε(α+ε2)−α
ε1/2(α+ε2)1/2+α1/2

)

and
∥

∥y0 − y∗
∥

∥

V
,

∥

∥λ0 − λ∗
∥

∥

V
are sufficiently small,

then the sequence {(yn, vn, λn, µn)} generated by the algorithm converges superlinearly in
H1(Ω)×L2(Ω)×V ×L2(Ω) to (y∗, u∗, λ∗, µ∗). Moreover, there exists a constant C > 0 such
that

(5.12)
∥

∥(vn+1 − v∗, yn+1 − y∗, λn+1 − λ∗)
∥

∥

L2×V ×V
≤

C
(

‖yn − y∗‖2
V + ‖λn − λ∗‖2

V

)

+ o(‖(yn − y∗, λn − λ∗)‖
Lp×Lp).

Proof. By considering system (3.13)-(3.16) and the system in step (2) of Algorithm 5.2, it
can be verified that the increments δy = yn+1 − y∗, δλ = λn+1 − λ∗, δu, δµ and δφ satisfy
the system

ν(∇δy,∇φ) +
1

ε
(δy, φ) + c(yn, δy, φ) + c(δy, y

n, φ)

=
1

ε
(δv, φ) + (((yn − y∗) · ∇)(yn − y∗), φ), for all φ ∈ V,

(5.13)
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ν(∇δλ,∇φ) − c(yn, δλ, φ) − c(δy, λ
n, φ) + c(w, yn, δλ) + c(w, δy, λ

n)

= ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), φ) − (δy + δµ, φ), ∀φ ∈ V.

(5.14)

Introducing the auxiliar variable ϕ := εµ + α
ε v, and considering (3.15) and (5.1) together

with the semi-smooth Newton update for un and µn we also obtain that

δλ − α

ε
δv +

α

ε
δy = εδµ(5.15)

δϕ = εδµ +
α

ε
δv(5.16)

δϕ − α

ε
δv = Gn

max(δϕ) +Gn
min(δϕ) +R(5.17)

where

Gn
max,i(φ) =

{

φ on An+1
bi

0 on Ω\An+1
bi

and Gn
min,i(φ) =

{

φ on An+1
ai

0 on Ω\An+1
ai

,

and

R = max(0, ϕ∗ + (ϕn − ϕ∗) − α

ε
b) − max(0, ϕ∗ − α

ε
b) −Gn

max(ϕ
n − ϕ∗)

+ min(0, ϕ∗ + (ϕn − ϕ∗) − α

ε
a) − min(0, ϕ∗ − α

ε
a) −Gn

min(ϕn − ϕ∗).

Due to Newton differentiability of the max(0, ·) and min(0, ·) functions (cf. [17]) from
Lp(Ω) → Lq(Ω), with q < p, we therefore obtain that

(5.18) ‖R‖
L2 = o(‖ϕn − ϕ∗‖

Lp),

with p > 2.

Multiplying equation (5.17) by δv we get that

(5.19) −(R, δv) = (Gn
max(δϕ) +Gn

min(δϕ), δv) − (δϕ, δv) +
α

ε
‖δv‖2 .

Additionally, from the definition of Gn
max and Gn

min,

(5.20) (Gn
max(δϕ) +Gn

min(δϕ), δv) − (δϕ, δv) = (δϕ, δv)In ,

where (v, w)In :=
∫

In v · w dx.

On the other hand, substituting (5.15) in (5.14) and multiplying by δy we get that

ν(∇δλ,∇δy) +
1

ε
(δλ, δy) − c(yn, δλ, δy) − c(δy, λ

n, δy)

+ c(δy, y
n, δλ) + c(δy, δy, λ

n) = ((∇(yn − y∗))T (λn − λ∗)

− ((yn − y∗) · ∇)(λn − λ∗), δy) − ‖δy‖2 +
α

ε2
(δv, δy) − α

ε2
‖δy‖2 ,

(5.21)

which, utilizing (5.13) multiplied by δλ yields

(5.22)
1

ε
(δv, δλ) + (((yn − y∗) · ∇)(yn − y∗), δλ) − c(yn, δy, δλ) − c(δy, y

n, δλ)

= ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy) − α

ε2
‖δy‖2

+
α

ε2
(δv, δy) − ‖δy‖2 + c(yn, δλ, δy) + c(δy, λ

n, δy) − c(δy, y
n, δλ) − c(δy, δy, λ

n).
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Consequently, utilizing the properties of the trilinear form,

(5.23)
(

α+ ε2

ε2

)

‖δy‖2
+

1

ε
(δv, δλ) +

α

ε2
(δv, δy) − 2c(δy, λ

n, δy) = ((∇(yn − y∗))T (λn − λ∗)

− ((yn − y∗) · ∇)(λn − λ∗), δy) − (((yn − y∗) · ∇)(yn − y∗), δλ) +
2α

ε2
(δv, δy).

and therefore

(5.24)
1

ε
(δv, δϕ) ≤ 2α

ε2
(δv, δy) + 2N ‖λn‖V ‖δy‖2

V −
(

α+ ε2

ε2

)

‖δy‖2

+ ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy)

− (((yn − y∗) · ∇)(yn − y∗), δλ).

Let us now consider the increment equation (5.13) and multiply it by δy. We get the estimate

(5.25) ν ‖δy‖2
V +

1

ε
‖δy‖2 −M(yn) ‖δy‖2

V ≤ 1

ε
(δv, δy) + N ‖yn − y∗‖2

V ‖δy‖V ,

which, by considering a y∗ neighborhood such that

(5.26) ν −M(yn) ≥ 1

2
(ν −M(y∗)) > 0

and Poincare inequality, implies that

(5.27)
1

2
(ν −M(y∗)) ‖δy‖2

V +
1

ε
‖δy‖2 ≤ 1

ε
(δv, δy) + N ‖yn − y∗‖2

V ‖δy‖V .

Consequently, we obtain the estimate

(5.28) ‖δy‖V ≤ 2σ(
κ

ε
‖δv‖ + N ‖yn − y∗‖2

V ),

with σ := (ν −M(y∗))−1.

Using (5.27) in (5.24) and grouping terms yields

(5.29)
1

ε
(δv, δϕ) ≤ 2α+ 4σε ‖λn‖V

ε2
(δv, δy) −

(

α+ ε2 + 4σε ‖λn‖V

ε2

)

‖δy‖2

+ 4Nσ ‖λn‖V ‖yn − y∗‖2
V ‖δy‖V − (((yn − y∗) · ∇)(yn − y∗), δλ)

+ ((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy).

Since

(5.30)

∥

∥

∥

∥

∥

cδv −
(

α+ ε2 + 4σε ‖λn‖V

ε2

)1/2

δy

∥

∥

∥

∥

∥

2

= c2 ‖δv‖2

− 2c

ε

(

α+ ε2 + 4σε ‖λn‖V

)1/2
(δv, δy) +

(

α+ ε2 + 4σε ‖λn‖V

ε2

)

‖δy‖2 ,
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we obtain, by choosing c =
α+2σε‖λn‖V

ε
√

α+ε2+4σε‖λn‖V

, that

(5.31)
1

ε
(δv, δϕ) ≤ (α+ 2σε ‖λn‖V )2

ε2(α+ ε2 + 4σε ‖λn‖V )
‖δv‖2 + 4Nσ ‖λn‖V ‖yn − y∗‖2

V ‖δy‖V

+ ((∇(yn − y∗))T (λn − λ∗)− ((yn − y∗) · ∇)(λn − λ∗), δy)− (((yn − y∗) · ∇)(yn − y∗), δλ).

Consequently, from (5.19)-(5.20) and (5.31) we therefore obtain

|(R, δv)| ≥
α

ε
‖δv‖2 −

∣

∣

∣

∣

(α+ 2σε ‖λn‖V )2

ε2(α+ ε2 + 4σε ‖λn‖V )
‖δv‖2

In

+((∇(yn − y∗))T (λn − λ∗) − ((yn − y∗) · ∇)(λn − λ∗), δy)In

−(((yn − y∗) · ∇)(yn − y∗), δλ)In + 4Nσ ‖λn‖V ‖yn − y∗‖2
V ‖δy‖V

∣

∣

∣ ,

which by considering a (y∗, λ∗) neighborhood such that

(5.32) ‖λn‖V ≤ 2 ‖λ∗‖V

implies that

|(R, δv)| ≥ α

ε
‖δv‖2 − (α+ 4σε ‖λ∗‖V )2

ε2(α+ ε2)
‖δv‖2

−N ‖yn − y∗‖2
V (8σ ‖λ∗‖V ‖δy‖V + ‖δλ‖V ) − 2N ‖yn − y∗‖V ‖λn − λ∗‖V ‖δy‖V .

Since, by hypothesis, ‖λ∗‖V < α1/2

4ε (ν −M(y∗)) ε(α+ε2)−α
ε1/2(α+ε2)1/2+α1/2

we get that

(5.33) β :=
αε(α+ ε2) − (α+ 4σε ‖λ∗‖V )2

ε2(α+ ε2)
> 0

and therefore

(5.34) β ‖δv‖2 ≤ ‖R‖ ‖δv‖ + N ‖yn − y∗‖2
V (8σ ‖λ∗‖V ‖δy‖V + ‖δλ‖V )

+ 2N ‖yn − y∗‖V ‖λn − λ∗‖V ‖δy‖V .

On the other hand, by multiplying (5.14) by δλ we get that

(5.35) ν ‖δλ‖2
V +

1

ε
‖δλ‖2 −M(yn) ‖δλ‖2

V ≤ 2N ‖δy‖V ‖λn‖V ‖δλ‖V

+ 2N ‖yn − y∗‖V ‖λn − λ∗‖V ‖δλ‖V +
( α

ε2
+ 1

)

‖δy‖ ‖δλ‖ +
α

ε2
‖δv‖ ‖δλ‖ ,

which, considering (5.32) and (5.26), implies that

(5.36)
1

2
(ν −M(y∗)) ‖δλ‖V ≤

(

κ2α

ε2
+ κ2 + 4N ‖λ∗‖V

)(

α+ ε2

ε2

)

‖δy‖V

+
α

ε2
‖δv‖ + 2N ‖λn − λ∗‖V ‖yn − y∗‖V .

Therefore, utilizing estimate (5.28), there exists a constant C̄ such that

(5.37) ‖δλ‖V ≤ C̄(‖δv‖ + ‖λn − λ∗‖2
V + ‖yn − y∗‖2

V ).
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Fig. 6.1. Forward facing step channel.

¿From the definition of ϕ and (5.18) we therefore obtain that

‖R‖ = o(‖(yn − y∗, λn − λ∗)‖
Lp×Lp),

which, considering estimates (5.28) and (5.37) in (5.34), implies the existence of a constant
C such that

(5.38) ‖(δv, δy, δλ)‖
L2×V ×V ≤ C

(

‖yn − y∗‖2
V + ‖λn − λ∗‖2

V

)

+ o(‖(yn − y∗, λn − λ∗)‖
Lp×Lp).

Consequently, the superlinear convergence is verified.

6. Numerical results. For the numerical tests, a ”forward facing step channel” was
utilized (see Figure 6.1). The fluid flows from left to right with parabolic inflow condition
with maximum value equal to one and ”do nothing” outflow condition. In the remaining
boundary parts an homogeneous Dirichlet condition was imposed. The geometry was dis-
cretized using a staggered grid and an upwinding finite differences scheme was applied. The
behavior of the uncontrolled fluid flow with Reynolds number Re = 1000 is depicted in Fig-
ure 6.2. Two main recirculation zones, which increase their size together with the Reynolds
number, can be clearly identified from the graphics.

The target of our control problem is to properly diminish the recirculations of interest by
considering, together with the tracking type cost functional, adequate pointwise control-state
constraints.

For the solution of the optimality system, Algorithm 5.2 was utilized. The semi-smooth
Newton algorithm stops when the L2-norm of the state increment is lower than 10−4. Unless
otherwise specified, the mesh step size h = 1/240 was considered. For the solution of the
linear systems, MATLAB’s exact solver was utilized.

6.1. Example 1. In this first experiment, we consider the elimination of bubbles in the
channel by imposing the constraint y1+εu1 ≥ −10−7. For ε sufficiently small, this constraint
avoids backward flow in the channel and thus possible recirculations. Additionally, the
tracking type component of the cost functional is responsible for a more linear behavior of
the flow field. The remaining parameter data utilized are h = 1/240, Re = 1000, ε = 10−4

and α = 0.1. The semi-smooth Newton method (SSN) stops after 9 iterations, with the final
active set containing 28 grid points. The cost functional takes the final value J(y∗, u∗) =
0.00445224 and the NCP function residuum the value 2.2737×10−9. The optimal control field
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Fig. 6.2. Streamlines of the uncontrolled state.

Fig. 6.3. Example 1: control vector field with tracking component.

is depicted in Figure 6.3, where the concentration of the control action on the recirculation
zones can be observed. The desired recirculation diminishing effect of the control can be
visualized from the plot of the reached controlled state streamlines in Figure 6.4. In Table
6.1 the number of SSN iterations, the final cost functional value and the size of the active
set are registered for different ε values. It can be observed that as ε tends to 0, the problem
becomes harder to solve and more SSN iterations are required.

Subsequently we consider the limit case where the tracking type part of the cost functional
is dismissed. We aim to find the control of minimum norm that allows the satisfaction of
the state constraint y1 + εu1 ≥ 10−7 over the domain of interest. As before, the constraint
takes care that no important backward flow arises. By considering the constraint on the
whole domain, i.e. ΩS = Ω, both recirculations before and after the step are diminished
(see Figure 6.5). From Figure 6.5 it can also be observed that the behavior of the fluid flow,
mainly before the step, is not close to the Stokes flow, as is the case when the tracking type
component is present. From the control vector plot (see Figure 6.6) it can be observed that
the control action in this case is even more concentrated on the recirculations zones. The
parameter values for this case are Re = 1000, ε = 10−4 and α = 0.1. The number of SSN
iterations needed is 29 and the cost functional takes the final value 8.99816 × 10−4.

In many practical cases, the recirculations reduction or elimination on the whole domain
is not necessary, if not undesirable. In such cases the state constraint may be imposed in
the sectors where the bubble to be diminished is localized. In the case of our geometry
the essential recirculation to be diminished is the one after the step. By considering the
state constraint on the subdomain ΩS := [0.5, 0.75]× [0.25, 0.5], this elimination is attached
with the cost functional value 8.98898 × 10−4 in 6 SSN iterations. The final controlled
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Fig. 6.4. Example 1: streamlines of the controlled state with tracking component.

ε SSN Iter. J(y∗, u∗) |Aa ∪Ab |
10−1 5 0.00399972 33
10−2 6 0.00410360 42
10−3 8 0.00438273 29
10−4 9 0.00445224 28
10−5 9 0.00445989 32

Table 6.1

Example 1: h=1/240, tol = 10−4.

state is shown in Figure 6.7, where it can be clearly seen that the recirculation after the
step is numerically eliminated, although the one before the step becomes bigger than in the
uncontrolled case.

6.2. Example 2. As an alternative strategy for the reduction of the recirculation after
the step, we consider in this example a state constraint that guarantees an homogeneous
outflow velocity. The constraint imposed is y1 + εu1 ≤ 1.7 and the remaining parameter
values are Re = 1000, ε = 10−3 and α = 0.01. In this case, the SSN algorithm stops after
15 iterations and the resulting active set contains 2283 grid points. The cost functional
takes the final value J(y∗, u∗) = 0.003470768. The controlled state is depicted in Figure 6.8,
where an important reduction of the recirculations can be visualized.

Since the outgoing velocity is the quantity of interest, it is natural to consider the case where
the constraint is imposed only in the last part of the channel. By considering the domain
ΩS := [0.5, 0.75] × [0.25, 0.5], the recirculation diminishing effect does also take place (see
Figure 6.9), but with a lower final cost functional value J(y∗, u∗) = 0.0031112131. The SSN
algorithm stops after 10 iterations with a final active set containing 906 active points. The
remaining parameter values are the same as in the case ΩS = Ω.

Finally, in order to visualize the structure of the control-state constraint multiplier, we mod-
ify the Reynolds number to 500 and impose the homogeneous outgoing velocity constraint
y1 +εu1 ≤ 1.7. The evolution of the multiplier as ε decreases can be observed in Figure 6.10.
In Table 6.2 the evolution of the SSN is registered. The algorithm stops after 7 iterations
with the final active set containing 2465 grid points. As expected from the theoretical re-
sults, local superlinear convergence can be observed from the data. Let us point out that,
although no monotonic behavior of the cost functional along the iterations occurs, a mono-
tonic decrease of the nonlinear complementarity function and of the size of the active set
can be observed.
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Fig. 6.5. Example 1: streamlines of the controlled state without tracking component.

Fig. 6.6. Example 1: control vector field without tracking component.

Ω
S
 

Fig. 6.7. Example 1: streamlines of the controlled state without tracking component; state constraint
subdomain.

Fig. 6.8. Example 2: streamlines of the controlled state
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Ω
S
 

Fig. 6.9. Example 2: streamlines of the controlled state; state constraint subdomain.

Iteration | An | J(y, u) ‖yn − yn−1‖ ‖yn−yn−1‖
‖yn−1−yn−2‖

NCP

1 0 0.00156432 9.4321 - 29.43065
2 2743 0.00349897 12.40964 - 4.531425
3 2571 0.003355 1.05301 0.0077 1.663621
4 2494 0.0033477 0.2134005 0.201 0.397106
5 2469 0.00334765 0.0151623 0.07079 0.052505
6 2465 0.00334765 5.55 ·10−4 0.03634 2.22 ·10−14

7 2465 0.00334765 2.048 ·10−8 3.86 ·10−5 2.22 ·10−14

Table 6.2

Example 2: h = 1

240
, ε = 10−3, Re = 500.
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Fig. 6.10. State constraint multiplier; ε = 10−1, ε = 10−2, ε = 10−3, ε = 10−4
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