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Abstract. Recently, inertial mircofluidics has emerged as a promising tool to manipulate complex liquids
with possible biomedical applications, for example, to particle separation. Indeed, in experiments different
particle types were separated based on their sizes (A.J. Mach, D. Di Carlo, Biotechnol. Bioeng. 107, 302
(2010)). In this article we use a theoretical study to demonstrate how concepts from optimal control theory
help to design optimized profiles of control forces that allow to steer particles to almost any position at the
outlet of a microfluidic channel. We also show that one specific control force profile is sufficient to guide
two types of particles to different locations at the channel outlet, where they can be separated from each
other. The particles just differ by their size which determines the strength of the inertial lift forces they
experience. Our approach greatly enhances the efficiency of particle separation in the inertial regime.

1 Introduction

Sorting particles is important for a wealth of technological
applications ranging from biological and chemical to med-
ical systems [1–3]. Especially, microfluidics and its lab-
on-a-chip applications [4] are used to manipulate particles
in a Poiseuille flow and to steer them to different lateral
locations in a channel in order to separate different par-
ticle types from each other [1–3]. This procedure is also
called continuous flow separation. At low Reynolds num-
bers, where fluid inertia can be neglected, spherical parti-
cles just follow the streamlines of fluid flow [5]. However,
in biomedical applications often the Reynolds number is
above one and the so-called lift forces drive particles to
specific lateral positions in a microfluidic channel [6–11].
This inertial focussing is then used to separate bioparti-
cles such as red blood cells and bacteria from each other
or to filter out one particle type [9, 11–13]. The purpose
of this article is to demonstrate how methods inspired by
optimal control theory [14–16] help to determine control
forces, which are additionally applied to flowing particles
and are able to redirect or steer them to specific locations
at an channel outlet. As we demonstrate, this largely im-
proves the capability of inertial microfluidics to separate
particles.

At Reynolds numbers larger than one, particles mi-
grate towards preferential positions in a channel depend-
ing on the geometry of the channel cross-section. As first
observed by Segré and Silberberg in circular channels, the
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particles accumulate on an annulus halfway between the
channel center and the wall [17]. In a square channel they
settle to four positions located between the channel center
and the centers of the channel faces [18]. To explain iner-
tial focussing, already Segré and Silberberg introduced the
inertial lift force [17]. It combines two contributions. The
first one is induced by the shear gradients of the Poiseuille
flow and drives particles to positions with higher shear
gradients, while the wall-induced contribution pushes par-
ticles towards the channel center [19].

Channels with rectangular cross-sections allow to in-
dependently tune the magnitude of the lift forces in two
directions by varying the aspect ratio. If this ratio is suffi-
ciently large, lift forces along the longer cross-sectional
axis point towards the center plane of the channel, as
demonstrated in finite-element studies [18]. As a result the
particle dynamics becomes two-dimensional. This has re-
peatedly been demonstrated in experiments [8, 13, 20,21].
In the following, we will use this fact in our investigations.

Lift forces are caused by the non-linear term in the
Navier-Stokes equations. Semi-analytic studies valid for
small particle size compared to the channel diameter
are based on the method of matched asymptotic expan-
sion [22, 23]. They reproduce experimental results in the
range of intermediate Reynolds numbers. In microfluidic
systems particle sizes are typically comparable to the
channel diameter and one has to resort to fully numer-
ical methods to determine the lift forces. Such studies in-
clude simulations using finite elements [18], lattice Boltz-
mann [24], and multi-particle collision dynamics [25].
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Inertial lift forces show a pronounced scaling with the
particle radius [18,22]. For example, they direct large par-
ticles to specific lateral positions in the channel. Smaller
particles only experience small forces which take longer to
establish focussed particle trains. Therefore, smaller parti-
cles keep their initially uniform distribution in the channel
cross-section for longer times. Mach et al. have used this
effect to separate bacteria from red blood cells which only
works due to the sufficiently large difference in particle
size [13]. Particle separation would be more effective, in
particular for particles of similar size, if one could direct
them to defined lateral positions within the channel. In
the following we use methods from optimal control the-
ory [14] to design the action of control forces that are able
to steer particles to almost any cross-sectional position.
We also demonstrate that our approach can separate two
particle types of similar size using solely the difference in
the lift-force profiles.

The theory of optimal control of systems that are de-
scribable by partial differential equations is widely em-
ployed in different fields such as fluid mechanics, micro-
electronics, crystal growth, vascular surgery, and cardiol-
ogy [14]. Here we apply it to the Smoluchowski equation,
which governs the microfluidic system, and determine ex-
ternal control forces for particle steering. Optimal control
theory of stochastic systems is commonly used in finance
where the inherent uncertainty of stock prices is modeled
by a Langevin equation [26]. For example, Merton’s fa-
mous portfolio problem deals with an investiment strat-
egy and surprisingly permits an analytic solution [27]. The
field of reinforcement learning, applied, for example, in
machine learning in computer science, game theory, and
genetic algorithms, develops strategies on how an agent
can choose its actions to maximize expected future re-
wards [28]. Recently, optimal control has also been applied
to stochastic thermodynamics [29].

Section 2 outlines how we use optimal control the-
ory for steering and separating particles. We also explain
our numerical method to solve the relevant equations. In
sect. 3 we review necessary facts from inertial microflu-
idics and present profiles of lift forces to be used for the
following investigations. Finally, in sect. 4 we demonstrate
how optimal control theory helps to steer particles and to
separate them based on their size. We finish with a sum-
mary and conclusions in sect. 5.

2 Optimal control of particle separation

In the following we outline the theory to perform optimal
control in order to steer particles in a microchannel to
specific lateral positions. As illustrated in fig. 1, a single
particle with position �x = (x, z) moves in a rectangular
domain −w ≤ x ≤ w, 0 ≤ z ≤ L under the influence of a
pressure-driven Poiseuille flow that causes a drift velocity
vz(x) along the axial z-direction which is fixed in the fol-
lowing. An inertial lift force flift(x) acts along the lateral
x-direction which we explain in sect. 3.2. In addition, we
introduce a control force u(�x ) to steer particles. We will
comment on its experimental realization in sect. 3.3.

Fig. 1. The schematic control setup. We try to steer a sin-
gle particle, whose initial position is distributed according to
ρ0(xi) (red bar), towards a given target interval at the channel
end (green bar). The target is specified by the rewards function
R(x), which is one inside the target interval and zero outside.
The particle experiences lift [flift(x)] and control [u(x, z)] forces
along the lateral x-direction and drifts with velocity vz(x) in
the z-direction.

Since the particle also performs thermal Brownian mo-
tion, we set up the Smoluchowski equation for the prob-
ability density ρ(�x, t) to find the particle at position �x at
time t,

∂

∂t
ρ(�x, t) = −�∇ ·�j = Lρ(�x, t), (1)

where the differential operator L is specified below. The
probability current �j has contributions from deterministic
drift motion and thermal diffusion. Its respective compo-
nents along the lateral and axial directions are given by

jx(�x ) =
[
ξ−1[flift(x) + u(�x )] − D

∂

∂x

]
ρ(�x, t), (2)

jz(�x ) = vz(x)ρ(�x, t), (3)

where ξ is the Stokes friction coefficient and D = kBT/ξ
the diffusion constant of the particle. Along the axial di-
rection we neglect thermal motion. With these currents
the operator L assumes the form

L[u]=− ∂

∂x

[
ξ−1[flift(x)+u(�x )]−D

∂

∂x

]
− ∂

∂z
vz(�x ). (4)

As the particles cannot leave the microchannel through
the bounding walls, the probability current in the x-direc-
tion has to satisfy jx =0 at the lateral boundaries x=±w.

2.1 Steering one particle

We consider a single particle which we try to steer from
the channel inlet (z = 0) into a given target interval
[xt − b, xt + b] at the channel outlet (z = L) by apply-
ing an appropriate control force u(�x ) (see fig. 1). Initially,
the probability to find the particle inside the channel is
zero, while its initial position xi at the inlet is distributed
according to ρ0(xi). The probability J of the particle to
exit through the target is given by integrating the proba-
bility current over the target interval,

J =
∫ ∞

0

dt

∫ +w

−w

dx jz(x, z = L, t)R(x), (5)
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where we introduced the rewards function R(x) from
optimal control theory [28] which in our case becomes
R(x) = 1 for x ∈ [xt−b, xt+b] and zero otherwise. We also
integrate over all times, as we are only interested whether
the particle reaches its target, and not how long this takes.

Determining an optimal control force u by maximizing
the probability J is not a well-defined mathematical prob-
lem [14]. First, it allows for arbitrarily large control forces
and second, so far the control foces can vary on arbitrar-
ily small length scales. To remedy both problems, we add
two regularization terms to J . First, to avoid excessively
high control forces, we introduce the quadratic control cost
1
2λ2

∫
Ω

d2x |u(�x )|2, where Ω is the spatial domain of the
channel. Second, to obtain smooth profiles for the control
force, we use 1

2

∫
Ω

d2x[(λx
∂
∂xu(�x ))2 + (λz

∂
∂z u(�x ))2] that

penalizes large gradients in u. Now, instead of the prob-
ability J , we maximize what optimal control theory calls
the objective functional

J tot =
∫ ∞

0

dt

∫ +w

−w

dxf jz(xf , L, t)R(xf )

−1
2

∫
Ω

d2x

[
λ2[u(�x )]2 + λ2

x

(
∂

∂x
u(�x )

)2

+λ2
z

(
∂

∂z
u(�x )

)2
]
. (6)

A necessary condition for a maximum of J tot is that
its variation vanishes, δJ tot[u] = 0. However, the particle
probability density has to obey the Smoluchowski equa-
tion (1) and one includes this constraint for the variation
with a Lagrange multiplier [14]. As demonstrated in ap-
pendix A, the control force u(�x ) maximizing the objective
function then satisfies gradient equation

u(�x ) − λ2
x

λ2

∂2

∂x2
u(�x ) − λ2

z

λ2

∂2

∂z2
u(�x ) = u0(�x ), (7)

where u0(�x ) denotes the part of the optimal control force
u that is not related to the regularization terms,

u0(�x ) =
ξ−1

λ2
W (�x )

∂

∂x
V (�x ). (8)

Here we introduced the time-integrated or cumulated den-
sity W (�x ) =

∫ ∞
0

dt ρ(�x, t) that satisfies the stationary
Smoluchowski equation

L[u]W (�x ) = 0, (9)

with the boundary condition of vanishing current at the
channel walls (jx = 0) and W (x, z = 0) = ρ0(x) at the
inlet. We can also call W (�x ) the state function, which
satisfies the state equation (9). Introducing the adjoint
operator

L+[u]=ξ−1[flift(x)+u(x, z)]
∂

∂x
+vz(x)

∂

∂z
+D

∂2

∂x2
, (10)

the adjoint state function V (�x ) satisfies the stationary
Kolmogorov backward or adjoint equation

L+[u]V (�x ) = 0, (11)

with the respective boundary conditions ∂
∂xV (�x ) = 0 at

the channel wall and V (xf , z = L) = R(xf ) at the chan-
nel outlet. Since the Kolmogorov backward equation inte-
grates backward in time, V (�x ) gives the probability that
a particle starting at �x reaches the target with certainty.
Therefore, V is the so-called value function.

Note that all three partial differential equations (7),
(9), and (11) are coupled to each other and have to
be solved self-consistently. The resulting optimized con-
trol force is smooth on length scales λx/λ, λz/λ. Since
u(�x ) ∝ ∂V (�x )/∂x according to eqs. (7) and (8), the op-
timal control force pushes the particle along the gradient
of the value function and thereby increases the probabil-
ity that the particle reaches the target at the outlet. We
discuss this point in more detail in sect. 4.1.

We add a last remark. In general, the control force
u(�x ) maximizing the objective functional will be larger
than some maximal value umax available in a concrete set-
ting. To obey the bounds |u(x)| < umax, we determine the
optimal control of the unconstrained problem and project
it on the admissible set defined by the bounds

u(�x ) →

⎧⎪⎨
⎪⎩

u(�x ) if |u(�x )| < umax,

umax if u(�x ) ≥ umax,

−umax if u(�x ) ≤ −umax.

(12)

Though the result is not the exact optimal control, it gives
a good approximation that works very well for the appli-
cations.

2.2 Separation of particles

The problem of separating particles of different types i is a
direct extension of the single particle problem. We assume
that the particles differ in their respective lift forces f

(i)
lift

as well as friction coeffcients ξi. However, the control force
u(�x ) acting on the particles is the same for all particles.

In sect. 4.2 we will look at two particle types and max-
imize the probability that the first and the second particle
type reach their respective targets. In the simplest case of
a dilute system, where interactions between particles are
negligible, the probability for this event is the product of
the individual probabilities,

J = J1[u]J2[u]. (13)

Again, to obtain the total objective function J tot, we add
the two regularization terms for u(�x ). We perform the
variation of J tot as before but have to apply the product
rule to J = J1J2. Then the optimal control force without
the regularization terms becomes

u0(�x ) =
1
λ2

2∑
i=1

J

Jiξi
Wi(�x )

∂

∂x
Vi(�x ). (14)

Here the contribution for each particle type is weighted by
the probability J/Ji that particles of the other type reach
their respective targets. Wi and Vi are the respective time-
integrated probability density and the value function for
particle type i.
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2.3 Numerical evaluation

We solve eqs. (7), (9), and (11) numerically by discretiz-
ing them on a rectangular grid equal to the x, z lattice.
It has mesh sizes Δx and Δz and the coordinate basis
êx, êz. However, if one directly discretizes the operator
L using finite differences, one obtains a highly unstable
scheme which is basically due to the fact that the prob-
ability density can become negative [30]. To remedy this
shortcoming, we introduce on the grid a random walk pro-
cess with drift which is equivalent to our Smoluchowski
equation (1) with (4). This procedure is also known as
Markov chain approximation [30]. While it has originally
been designed for stochastic processes, it has also been
applied to deterministic systems [31].

We denote the probability to jump to lattice position
�xi from position �xj by Pij(u), where we only allow jumps
to nearest neighbors and the jump vector is Δ�xij = �xi−�xj .
The lattice process and the Smoluchowski equation are
equivalent when they both give the same mean displace-
ment and mean square displacement for the jump time Δt

∑
i∈NN(j)

Pij(u)Δ�xij = ξ−1[flift(�xj) + u(�xj)]êxΔt

+vz(�xj)êzΔt, (15)
∑

i∈NN(j)

Pij(u)Δ�xij ⊗ Δ�xij = 2Dêx ⊗ êxΔt

+O(Δt3/2), (16)

where NN(j) indicates the four nearest neighbors of po-
sition �xj . To satisfy eqs. (15) and (16), we choose the
transition probabilities as

Pij(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ−1 ([flift(�x )]+ + [u(�x )]+)
Δt

Δx
+

DΔt

(Δx)2
if Δ�xij = +Δxêx,

ξ−1 ([flift(�x )]− + [u(�x )]−)
Δt

Δx
+

DΔt

(Δx)2
if Δ�xij = −Δxêx,

vz
Δt

Δz
if Δ�xij = +Δzêz,

0 if Δ�xij = −Δzêz,

ξ−1(umax − |u|) Δt

Δx
if �xi = �xj .

(17)
Here we defined [flift(�x )]± = max(±flift(�x ), 0) and simi-
larly [u(�x )]±. This means that positive forces contribute
to jump probabilities in the positive x-direction, whereas
negative forces are taken into account in jumps along the
negative x-direction. We ensure that the jump probabili-
ties sum to one (Pjj +

∑
i∈NN(j) Pij = 1) by choosing the

jump time Δt accordingly. As the drift forces depend on
the grid position �xj , the time step Δtj also becomes de-
pendent on �xj . Since we are not interested in the time
behavior of our system, this does not cause any problems.
In principle, Δtj would also depend on the control force

u(�xj), which leads to numerical artifacts. To avoid this,
we also include a probability Pjj in eqs. (17) which does
not contribute to the mean displacement and mean square
displacement. However, when calculating Δtj , the term
proportional to |u| just cancels the respective terms in
Pij . The maximal control force umax is added to ensure
Pjj > 0. The non-zero Pjj slows down the relaxation of
the probability distribution Wi. Since we only determine
the steady state, this is not important for us.

Finally, we also include the boundary conditions in the
jump probabilities. To implement the zero probability cur-
rent at the channel walls at x = ±w, we set the probability
for jumping across the wall to zero and add its contribu-
tion to the probability Pjj of staying at the boundary. We
include the boundaries at z = 0 (inlet) and z = L (outlet)
by setting the jump probability to move forward along the
z-direction equal to one and all other transition probabil-
ities to zero. This means particles enter the system with
certainty at the inlet and leave it once they have reached
the outlet.

Now, the time dependence of the probability Wi obeys

W
(n+1)
i =

∑
j

Pij(u)W (n)
j + Δtiρi, (18)

which we iterate until we find the steady-state solution.
The second term on the right-hand side ensures that the
probability density at the inlet is always ρi = ρ0(xi)Δx.

Equation (18) shows that in our lattice approach the
Smoluchowski operator L is replaced by

Lij =
1

Δti
(Pij − δij). (19)

Since the stationary Kolmogorov backward equation (11)
is governed by the adjoint Smoluchowski operator L+, the
dynamics of Vi is governed by the transposed matrix L+

with elements [L+]ij = (Pji − δij)/Δti. So we determine
the steady-state solution of

V
(n+1)
i =

∑
j

Pji(u)V (n)
j + ΔtiRi, (20)

where the reward function Ri determines the boundary
condition at the outlet at z = L.

To discretize eq. (7), we interpret it as a stationary
diffusion equation with additional loss (−u) and source
(u0) terms. For diffusion along x- and z-direction with
the respective diffusion constants λ2

x/λ2 and λ2
z/λ2, we

introduce jump probabilities Γij as before

Γij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ2
xΔtu

λ2(Δx)2
if Δ�xij = ±Δxêx,

λ2
zΔtu

λ2(Δz)2
if Δ�xij = ±Δz êz,

0 if �xi = �xj ,

(21)

where Δtu is the time step of the jump process. The loss
term −u removes the diffusing agent with probability Δtu
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from the lattice. So the jump probabilities do not sum
to one but obey

∑
i∈NN(j) Γij = 1 − Δtu. This relation

also fixes the time step Δtui. Finally, the source term u0

defined in eq. (14) adds Δtuiu0i per time step. In total,
we introduce the time-dependent lattice process for the
control force variable ui,

u
(n+1)
i =

∑
j

Γiju
(n)
j + Δtuiu0i, (22)

which in steady state is equivalent to solving eq. (7) and
thereby determines the optimal control force ui. Since dis-
cretizing the source term Δtuiu0i requires special care, we
explain it in the appendix B.

To solve eqs. (18), (20), and (22), we use an iterative
scheme. For given uα, we determine the steady-state solu-
tions W (α), V (α) of eqs. (18), (20), which then should give
a refined control force uα+1 from the steady-state solution
of eq. (22) using W (α), V (α). Then the iteration step starts
anew. Typically, we start the iteration with u(0)(�x ) = 0.
However, the scheme just outlined produces oscillations in
u in the case of particle sorting since it tries to alternately
optimize the trajectories of the different particle types.
To prevent these oscillations, we introduce a relaxation
dynamics for the control force u also used, for example, in
training neural networks [32],

u(α+1) = (1 − γ(α))u(α) + γ(α)ū(α+1)(W (α), V (α)). (23)

Here the relaxation or update rate γ(α) assumes small
and α-dependent values so that u(α+1) relaxes towards
the steady-state solution ūα+1(W (α), V (α)) of eq. (22). We
chose the update rate as γ(α) = 0.1/(1 + β × α), where
β = 0.02 for the single particle steering and β = 0.05 for
particle separation. With this procedure u(�x ) indeed re-
laxed towards a steady-state solution of eq. (22), where
we checked that always γ(α) ≥ 10−4.

3 Application to inertial microfluidics

Now we explain how we realize optimal control of particle
steering and separation within inertial microfluidics.

3.1 The system

We study a rectangular channel with fixed width 2w,
height 2h, and varying length L as illustrated in fig. 2. The
channel axis points along the z-direction and x = y = 0
corresponds to the center of the channel cross-section. We
concentrate here on a channel aspect ratio w/h ≈ 0.42.
Since it is sufficiently smaller than one, we can restrict
the particle dynamics to the y = 0 plane as explained
in sect. 3.2. A particle position in this plane is denoted
by �x = (x, z). The channel is filled by a Newtonian
fluid with density ρ and kinematic viscosity ν which ex-
hibits a pressure-driven Hagen-Poiseuille flow profile [33].
The maximum flow velocity v0 in the channel center de-
termines the Reynolds number Re = 2wv0/ν [34]. The

Fig. 2. a) Schematic of the rectangular channel with width 2w,
height 2h and length L. The two-dimensional plane relevant
for the colloidal dynamics is shown in grey. b) The (x, z) plane
where the dynamics of the colloid takes place. The pressure-
driven flow has a parabolic profile. The colloid of radius a
moves with velocity vz(x) along the channel in the z-direction.
In the lateral x-direction it experiences the internal lift force
flift(x) and the external control force u(x, z).

fluid contains a spherical particle with radius a and mass
M = 4/3πa3ρ. Here, we fix the Reynolds number to
Re = 10 and use two different particle sizes a/w = 0.3 and
a/w = 0.4, which are typical experimental values [7,8,18].

We determine the flow field within the channel and
inertial lift forces acting on suspended particles using
a mesoscopic simulation technique called Multi-Particle
Collision Dynamics (MPCD) which effectively solves the
Navier-Stokes equations [35–37]. We have recently used
it to study the motion of sheets and active particles
as well as the locomotion of the parasite African try-
panosome [38–41]. Details of the MPCD technique applied
to inertial microfluidics have been described in [25]. In con-
trast to our previous investigations we use here a channel
with rectangular cross-section.

3.2 Lift forces

Since fluid inertia cannot be neglected at finite Reynolds
numbers, the embedded particle experiences a lift force
in the lateral channel direction [17]. The lift force has two
contributions: a wall-induced component directed towards
the channel center and a component induced by the non-
uniform shear gradient of the Poiseuille flow which is di-
rected towards the bounding walls [19].

Using MPCD, we determined both components of the
lift force in the x, y plane, flift,x and flift,y, and also the
axial velocity vz of the colloid. Close to the centerline at
x = y = 0, where the influence of the walls can be ne-
glected, we find that the lift force scales with the particle
size a/w and Reynolds number Re as

flift ∝
( a

w

)m

Re2. (24)

The exponent m ≈ 3 agrees with our earlier findings on
circular channels [25] and results for rectangular chan-
nels [18].
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Fig. 3. The profile of the lift force (flift,x, flift,y) in the cross-
sectional x, y plane for particle size a/w = 0.4 and Reynolds
number Re = 10. Note the different scales in x- and y-
direction. Since the height of the channel is larger than its
width (w/h = 0.42), the particle always experiences a force
towards the central plane at y = 0.

We already mentioned in the introduction that in
channels with sufficiently large aspect ratio the lift forces
along the longer cross-sectional axis always point towards
the center plane of the channel (y = 0 in our case,
see fig. 2). This leaves only two stable positions along
the x-axis each halfway between channel center and the
walls [18]. In particular, the fact that the particles always
experience a force which pushes them towards the center
plane constrains the colloidal dynamics to two dimensions.
This has already been used in experiments for sorting
cells [13, 21]. Now, fig. 3 shows an example for the cross-
sectional lift-force profile for particle radius a/w = 0.4.
Indeed, the lift-force component along the y-direction is
always negative in the upper half of the channel and di-
rected towards the center plane at y = 0. The profile
for a/w = 0.3 (not shown) looks qualitatively the same.
Hence, in the following we will concentrate on the particle
dynamics in the y = 0 plane.

In fig. 4 we plot the lift force and axial particle ve-
locity at y = 0 versus the x coordinate. The results of
the MPCD simulations (symbols) are fitted to appropri-
ate functions with a least-squares fit (solid lines). Details
of the fit are described in appendix C. We will use the
analytic expressions of the fits when determining the op-
timal control force for particle steering and separation.
Note that flift = 0 indicates steady-state positions of the
particles. While the position at x = 0 is unstable, we have
two stable locations which we denote by ±|xeq|.

3.3 Langevin dynamics of the particle

Using the inertial lift force flift(x) = flift,x(x, y = 0),
the axial velocity vz(x), and an appropriate control force

Fig. 4. The inertial lift forces (a) and axial particle velocities
(b) at y = 0 plotted versus the lateral position x for a/w = 0.3
(red) and a/w = 0.4 (green). The symbols are obtained from
MPCD simulations and the lines for the lift forces are fits to
eq. (C.1) together with (C.2) while for vz(x) a parabolic fit to
c0 − c2x

2 − c4x
4 is used and v0 is the maximum flow velocity

of the applied Poiseuille flow.

u(x, z), we can formulate the overdamped Langevin dy-
namics of a single particle in the y = 0 plane of the mi-
crofluidic channel. It is equivalent to the description using
the Smoluchowski equation (1) together with the opera-
tor (4)

d
dt

x = ξ−1[flift(x) + u(x, z)] + η(t), (25)

d
dt

z = vz(x). (26)

Here, ξ is the Stokes friction coeffcient of the particle. The
stochastic force η(t) is of thermal origin, has a zero mean,
〈η(t)〉 = 0, and its second moment obeys the fluctuation-
dissipation theorem: 〈η(t)η(t′)〉 = 2Dδ(t − t′) with diffu-
sion constant D = kBT/ξ. We now discuss several aspects
of these equations.

To realize the spatially varying control force u(�x ) act-
ing on the particle inside the channel, one can think of
optical tweezers. They can produce non-uniform force pro-
files as demonstrated, for example, with scanning tweez-
ers in refs. [42–44] or holographic optical tweezers in
refs. [45–47]. For simplicity, we assume here that the
strength of the control force does not depend on the par-
ticle size. This approximation is valid for particles large
compared to the wavelength of light [48]. In the follow-
ing, we will choose the maximum control force umax al-
ways larger than the local maxium of the lift force for
a/w = 0.4 but of the same order of magnitude. So we
take umax = 0.264ρν2 = 264 pN, which is accessible in
experiments with optical tweezers [49–51].
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Typically, the axial velocity vz(x) is much larger than
the lateral drift velocities ξ−1flift and ξ−1umax (ca. by a
factor of 102–103). In the dynamics of the z coordinate
in eq. (26), we therefore neglect any effect the realization
of the control force might have on the axial particle mo-
tion. Furthermore, we also neglect thermal motion in axial
direction. Finally, we assume very dilute particle suspen-
sions so that we do not have to consider any interactions
between the particles.

In steady state the lateral x-position of the particle is
distributed according to the Boltzmann distribution

ρ0(x) ∝ exp
[

1
kBT

∫ x

0

dx′flift(x′)
]

. (27)

In ref. [25] we have demonstrated that this probability
density agrees with the particle distributions observed in
full hydrodynamic simulations. Since typically flifta �
kBT , the Boltzmann distribution is strongly peaked about
the steady-state positions on the positive and negative x
axis. So thermal motion hardly broadens the two peaks.

4 Optimal control in inertial microfluidics

In this section we present our results on how optimal con-
trol theory helps to steer single particles and to separate
differently sized particles in a microfluidic channel with
rectangular cross-section. In the following we always as-
sume that the particles had sufficient time to settle into
the central y = 0 plane. Here they order along the lat-
eral x-direction according to the Boltzmann distribution
ρ0 of eq. (27) about the steady-state positions xeq in both
halves of the channel. This is the situation from which we
start at our channel inlet.

4.1 Steering single particles

We illustrate the basic mechanism of the optimal control
as introduced in sect. 2 by steering a single particle to a
defined target. As an example we consider a particle with
radius a/w = 0.4 in a channel of length L = 200w using a
maximum allowed control force umax = 0.264ρν2. Without
control the two equilibrium positions are xeq ≈ ±0.33w
about which the initial distribution is strongly peaked.
By applying the control force, we can direct the particles
into the desired target interval. For the target interval
[0.05w, 0.15w], we illustrate the necessary control force in
fig. 5 by color-coding it in the channel plane. To verify
that these control forces are indeed able to steer parti-
cles, we simulated about 100 particle trajectories using
the Langevin equations (25) and (26). They are shown as
black lines.

We observe that the control force is mostly zero
(u/umax < 10−14) except in two narrow regions close to
the trajectories. This feature does not change qualitatively
when we vary the control-cost parameter λ introduced in
eq. (6). Decreasing it from λ2 = 10−3 to 10−5, the regions

Fig. 5. The color-coded control force in the x, z plane neces-
sary to steer a particle with a/w = 0.4 from its equilibrium po-
sitions at ±0.33w into the target interval [0.05w, 0.15w] (green
bar at z/w = 200). The maximum control force is given by
umax = 0.264ρν2. The black lines show 100 trajectories deter-
mined by simulating the Langevin equations (25) and (26). The
regularization parameters are given by λ2 = 10−3, λ2

x = 10−7,
and λ2

z = 10−4.

Fig. 6. The value function V (x, z) for the situation shown
in fig. 5. The white lines show the particle trajectories. The
control force illustrated in fig. 5 significantly deviates from zero
at large gradients of the value function as predicted by eqs. (7)
and (8).

of non-zero control force are just more extended since non-
zero control “costs less”, whereas for λ2 = 10−1 the re-
gions are more concentrated. So λ can be used to design
the action of the control force according to the experimen-
tal needs.

According to eqs. (7) and (8), we expect the control
force to be concentrated in regions where the value func-
tion V has large gradients meaning that the control forces
push the system to larger probabilities to reach the tar-
get. This is confirmed by fig. 6, where we show the value
function in blue: dark colors mean higher probability to
reach the target. The control force in fig. 5 follows very
nicely the sharp edge of the value function.

By changing the position of the target and its width,
we are able to steer the particle towards almost all avail-
able positions at the channel outlet. It is just difficult to
place the particles close to the walls due to the strong
repulsion from the walls. In fig. 7 we plot the peaked par-
ticle distributions at the channel outlet for a target posi-
tion xt/w = 0.2 and different target widths wt. The width
of the peaked distributions is independent of the target
width and solely determined by temperature. Since we
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Fig. 7. The distribution W (xf ) of the particle position at the
channel outlet for different target widths b. The target posi-
tion is xt/w = 0.2 (vertical black line) and temperature is
T = 300 K. The widths of the individual peaks are mainly
determined by the temperature and does not show any pro-
nounced dependence on other parameters. For b/w = 0.3, one
half of the particles stay at their equilibrium position at 0.33w
(black dashed line).

Fig. 8. The position xp of the particles at the outlet plotted
versus target position xt for different target widths 2b. The
line xp = xt is shown in black and the equilibrium position xeq

of the particles for zero control force is indicated.

only optimize the probability of the particle to reach the
target, its exact position at the outlet does not influence
the outcome. As a result we generally find two positions at
the channel outlet corresponding to the two equilibrium
positions at the channel inlet. Only for the smallest tar-
get widths do both positions coincide since the two parti-
cle trajectories starting at the inlet merge before reaching
the outlet.

In fig. 8 we demonstrate that we can place particles
at almost all positions xp at the outlet by tuning the tar-
get position xt and width 2b appropriately. If the equi-
librium position at xeq = 0.33 resides inside the target
interval, we typically find that the particles simply stay
there (upper red and green lines in fig. 8). Only the parti-
cles from the second equilibrium position at xeq = −0.33
need to be steered into the target. When the target width
is sufficiently small (blue line in fig. 8), the two particle

trajectories merge. They can even be placed between the
equilibrium position xeq = 0.33 and the wall, where the
repulsive wall force becomes large.

4.2 Separation of particles based on their size

We now demonstrate how we can separate two types of
particles of different size. We only use here their differ-
ences in the strength and profile of the lift forces. The
strength scales as the third power of particle radius near
the channel center [18, 25]. As already mentioned in the
introduction, Mach et al. [13] used this scaling to separate
a stream of particles. Whereas the larger particles were fo-
cussed to specific positions in the channel, the lift forces
acting on the smaller particles were small so that the par-
ticles kept their roughly uniform distribution in the chan-
nel cross-section. Since we use here an additional external
control force, we are able to focus both particle types to
specific locations which greatly enhances the efficiency of
particle separation.

In our first example, we consider a stream with two
types of particles with respective radii a1/w = 0.3 and
a2/w = 0.4 which we try to steer towards xt,1/w = 0.3
and xt,2/w = −0.3, respectively. The target width in both
cases is 2b = 0.2. The equilibrium positions of both the
larger (xeq = ±0.33w) and the smaller (xeq = ±0.38w)
particles are inside the target regions. However, since both
particle types occur at their two equilibrium positions at
the channel inlet, we have to move the particles across the
channel center to separate them. This is demonstrated in
fig. 9(a) for a channel of length L/w = 300. We color-
code the necessary control force profile to separate the two
particle types and show the resulting particle trajectories.
Starting from its positive equilibrium position, the smaller
particle is slightly pushed outwards and then relaxes to
its equilibrium position at the channel outlet. Similarly,
the larger particle at its negative equilibrium position is
slightly moved towards the channel center and then also
relaxes towards the equilibrium position with the help of a
weak control force. Particles located in the “wrong” half of
the channel are pulled together in the lower channel half.
Then, the control force together with the two different lift
force profiles separates both particle types and, finally,
they are steered into their respective targets.

For the force profile in fig. 9(a), we illustrate the corre-
sponding value function V = V1 +V2 as a sum of the value
functions for both particle types in fig. 10. As indicated, in
the regions with V ≈ 1 particles of either type 1 or 2 reach
their targets with certainty when started in the respective
region whereas the other particle type fails. Only in the
red region with V = 2 do both particle types reach their
targets. The control force profile to achieve this behavior
is concentrated around the gradients in V .

In fig. 9(b) we illustrate an even more challenging par-
ticle separation. We push the targets further apart and
strongly reduce their widths so that they no longer over-
lap with the equilibrium positions of the particles which
have to be pushed against the channel walls. However,
even then we are able to separate both particle types.
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Fig. 9. a) The trajectories of two types of particles with radii
a1/w = 0.3 (dashed line) and a2/w = 0.4 (solid line) that
are steered under the action of the color-coded control force
u(x, z)/umax into their targets at the channel outlet (green
bar). Maximum control force is umax = 0.264ρν2. The target
positions are xt,1/w = 0.3, xt,2/w = −0.3, and the widths are
2b/w = 0.2. b) Same as in a) but now the target positions are
xt,1/w = 0.45, xt,2/w = −0.4 and the widths are 2b/w = 0.04.

Fig. 10. Total value function V = V1(x, z) + V2(x, z) for the
system of fig. 9. Inside the green regions either particles of type
1 or 2 reach their targets with certainty whereas the other type
fails.

In the third example we keep the particle sizes as be-
fore but place the target for the smaller particles into
the center of the channel, while the larger particles are
steered towards two targets near to their equilibrium po-
sitions. Figure 11(a) illustrates how this setup can be used
to separate the two particle types. Behind the target line
(green dashed line) a bifurcating channel with three out-
lets is placed. Whereas the large particles are advected

Fig. 11. (a) Schematic microfluidic setup for particle sepa-
ration. Particles enter the system from the inlet (red dashed
line) at their equilibrium positions and flow through the de-
signed control force profile that steers particles to prescribed
positions at z = L. A bifurcating channel as in ref. [13] then
sorts the large particles into the side channels and the small
particles into the center outlets. (b) The trajectories of two
types of particles with radii a1/w = 0.3 (dashed line) and
a2/w = 0.4 (solid line) initiated by the color-coded control
force u(x, z)/umax. Small and large particles are steered into
respective targets (green bars) at xt,1/w = 0 and xt,2/w = 0.3;
the width is 2b = 0.2w.

to the side channels (solid lines), the small particles flow
on a straight path (dashed line) and are collected in the
third outlet. Exactly this type of bifurcating channel was
used in the experiments of Mach et al. to separate bacteria
from red blood cells [13]. However, whereas the large blood
cells could be collected in the side channels, the smaller
bacteria were still uniformly distributed. Their lift forces
are smaller and need longer channels to focus them. As a
result, some of the bacteria also entered the side channels
and the separation was not perfect.

By using the opimized control force profile u of
fig. 11(b) we can focus the smaller particles from their two
equilibrium positions to the channel center and thereby
improve the efficiency of separation. A closer look at the
particle trajectories shows that the equilibrium positions
at z = 0 of the larger particles (solid line) are slightly
closer to the channel center compared to the smaller par-
ticle. So the particle trajectories have to be swapped by
the control force to move the smaller particles to the cen-
ter. This is indeed accomplished by the control force in
combination with the lift forces.

In an experimental setting one always has noise and
imperfections. This will presumably also apply to the con-
trol force. We therefore add spatial noise to the control
force which then consists of the deterministic part and a
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Fig. 12. Separation probability J = J1J2 as a function of noise
amplitude of the control force, σ/umax, and different channel
lengths L/w for the set up of fig. 9. The maximum deterministic
control force is umax = 0.226ρν2.

stochastic component η

unoise(x, z) = u(x, z) + η(x, z). (28)

Here, the noise η is delta correlated in space with zero
mean and variance 〈η(x, z)η(x′, z′)〉 = σ2δ(x−x′)δ(z−z′).
For our first example, where we separate the small and
large particles into the two halves of the channel (see
fig. 9(a)), we determined the separation probability J =
J1J2 versus reduced noise amplitude σ/umax for different
channel lengths. The results are plotted in fig. 12. Sur-
prisingly, up to a noise strength of σ/umax = 1 and for
sufficiently long channels the separation is perfect (J = 1)
meaning that our method is very robust against noise.
This is also illustrated in fig. 13, where we plot the particle
distributions of the two types at the outlet for two noise
values σ/umax = 1 and 2.212. So, increasing the noise
beyond σ/umax = 1 decreases the separation probability
continuously. We also observe that perfect separation is
only possible beyond a certain length L of the channel.
A sharp transition at σ = 0 takes place between sorting
both particle types (L/w ≥ 160) and steering only one
type in its specific target (L/w = 150) while only half of
the particles of the other type reach their target due to
their initial equilibrium position.

5 Conclusion

Particle steering and separation in microfluidic chan-
nels is essential, for example, for biomedical applications.
Here we demonstrated how concepts from optimal con-
trol theory help to design optimal control force profiles.
In the inertial regime they steer particles in pressure-
driven Poiseuille flow. In particluar, for single particles
we designed control forces that are concentrated on nar-
row regions within the microfluidic channel and thereby
minimize the experimental efforts. These contol forces can
guide a particle train already focussed by inertial lift forces

Fig. 13. Particle distributions of the two particle types at the
channel outlet. At noise value σ = umax the particle separation
is still perfect, however even at σ = 2.212umax all large par-
ticles (green) are sorted in the correct target whereas some of
the small particles (blue) miss the right target. The targets are
indicated by rectangles shaded in the color of the particle type.
Solid and dashed black lines show the respective equilibrium
positions of the small and large particles. The channel length
is L = 300w and the maximum deterministic control force is
umax = 0.226ρν2.

to almost any position at the channel outlet. We then ap-
plied our approach to separate particles of different types.
Remarkably, we achieve this by one single control force
profile which acts on both particle types and steers them
to well-separated positions at the channel outlet. The sep-
aration of particles solely relies on the difference in the
lift-force pofiles and thereby allows to separate particles
of similar sizes. Our approach is even robust against strong
stochastic variations in the control force which may occur
in an experiment. This all goes well beyond existing ex-
perimental methods within inertial microfluidics [13] and
therefore improves the possibility of particle separation
and filtering in the inertial regime.

Scanning and holographic optical tweezers are a well-
established method to create an optical landscape which
acts with a force on colloidal objects [42–47]. The method
is ideal for realizing the optimized control force profiles
determined in this article. However, also other external
fields such as electric or magnetic fields are employed for
particle sorting and separation [2,3]. Combining these es-
tablished approaches with an optimal design for tuning
the strength of the applied fields would certainly enhance
their capability for steering particles.
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Future work will study how external fields are used
for optimal particle steering, in particular, within iner-
tial microfluidics. External fields not only act directly on
the particles. By slowing the particles down or enhancing
their velocities along the channel axis, also the lift force
profiles are modified [52,53]. Furthermore, so far we looked
at dilute suspensions where hydrodynamic interactions
between the particles are negligible. However, for high-
throughput systems it is desirable to increase the number
of particles flowing through the microfluidic device, so col-
lective effects become important [54–56]. We will address
them in future work and investigate how optimal control
theory presented here has to be modified for steering in-
teracting particles.

We thank P. Cicuta, F. Schulze, and K. Wolff for useful
discussions. We also acknowledge support by the Deutsche
Forschungsgemeinschaft in the framework of the collaborative
research center SFB 910.

Appendix A. Conditions for the optimal
control force

The objective functional J tot of eq. (6) has to be max-
imized under the constraint that the probability density
of the particle, ρ(�x, t), satisfies the Smoluchowski equa-
tion (1).

In eq. (5) we give the probability of the particle to
reach the target at z = L. We first rewrite it as follows. We
use jz(�x, t) = ρ(�x, t)vz(x) and introduce the cumulated or
time-integrated density W (�x ) =

∫ ∞
0

dtρ(�x, t) to arrive at

J =
∫ w

−w

dx vz(x)W (x,L)R(x). (A.1)

Integrating the Smoluchowski equation (1) over time, the
cumulated density inside the channel satisfies L[u]W (�x ) =
0. Contributions from the time integration at t = 0 and ∞
vanish. Initially there is no particle inside the channel and
at t = ∞ the particle has left the finite channel domain we
consider. The boundary condition jx = 0 at the channel
walls translates into

jW
x (±w, z) = 0, (A.2)

where we have defined jW
x (�x ) = (ξ−1[flift(x) + u(�x )] −

D ∂
∂x )W (�x ), and at the channel inlet we have

W (x, 0) = ρ0(x). (A.3)

Now, maximizing the objective functional J tot under
the constraints for the cumulated density W (�x ), one has

to consider the following Lagrangian functional:

J tot
C =

∫ +w

−w

dx vz(x)W (x,L)R(x)− 1
2

∫
Ω

d2x

[
λ2|u(x, z)|2

+λ2
x

(
∂u(x, z)

∂x

)2

+ λ2
z

(
∂u(x, z)

∂z

)2 ]

+
∫

Ω

d2xV (�x )L[u]W (�x )

+
∫ L

0

dz φ±w(z)jW
x (±w, z)

+
∫ +w

−w

dxφi(x)[W (x, 0) − ρ0(x)], (A.4)

where we introduced the Lagrange multipliers V (adjoint
state), φ±w, and φi to enforce, respectively, the stationary
Smoluchowski equation for W (�x ) as well as the boundary
condition at the channel walls and the initial condition.

Variation of J tot
C with respect to u(�x ) gives the already

stated gradient equation for the optimal control force u,

u(�x ) − λ2
x

λ2

∂2

∂x2
u(�x ) − λ2

z

λ2

∂2

∂z2
u(�x ) = u0(�x ), (A.5)

where

u0(�x ) =
1
λ2

W (�x )
∂

∂u
L+[u]V (�x ) (A.6)

results from the first term in the second line of eq. (A.4).
Note that L+[u], in contrast to L[u], only depends on u
and not its derivative ∂u/∂x.

Variation of J tot
C with respect to V (�x ), φ±w, and φi re-

produces the stationary Smoluchowski equation for W (�x )
as well as its boundary and initial conditions. On the other
hand, variation with respect to W (�x ) leads to the sta-
tionary Kolmogorov-Backward or adjoint equation for the
value function, L+[u]V (�x ) = 0, as well as the bound-
ary condition ∂

∂xV (�x ) = 0 at the channel walls and
V (x,L) = R(x) at the channel outlet.

Appendix B. Source term of the control
force equation

To solve eq. (7) for the optimal control force u(�x ) on a
lattice as implemented in eq. (22), we also have to dis-
cretize the source term u0(�x ) in eq. (14). In particular,
we have to discretize the derivative of the value function
Vi(�x ) of particle type i. Typically, this is done using cen-
tral differences. However, we made the experience that
our control force u oscillates during iteration and does
converge slowly. This is due to situations as illustrated in
fig. 14. Whereas the derivative of the value function V1 is
well represented by central differences, they do not reflect
the shape of V2. We, therefore, use forward and backward
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Fig. 14. Derivatives of the value functions. While for V1 both
central and one-sided differences agree, they give different val-
ues for V2.

differences to disctretize the source term,

u±
0 (�x ) =

1
λ2

∑
i

J

Jiξi
Wi(�x )

±[Vi(x ± Δx, z) − Vi(x, z)]
Δx

,

(B.1)
and use for u0 the discretized value with the larger mag-
nitude |u+

0 | or |u−
0 |.

Appendix C. Fitting lift forces and axial
velocities

To use the lift forces obtained with MPCD for the optimal
control of particle steering, we perform a least square fit to
an ansatz function. It consists of a third-order polynomial
to describe the shear-gradient contribution and a term
which takes into account the divergence of the lift force
close to the wall

fcl(x) = φ1x + φ3x
3 + φwfwall(x), (C.1)

where we use

fwall(x) =
1

x − (1 + δ)xmax
+

1
x + (1 + δ)xmax

, (C.2)

xmax = w − a indicates the position of the particle when
touching the wall at x > 0. We model the divergence at the
wall by 1/x but avoid the singularity through the offset
δ = 10−3 which facilitates the fitting procedure.

Second, we fit the axial velocity by a fourth-order poly-
nomial in the lateral coordinate x

vz(x) =
2∑

n=0

vnx2n. (C.3)
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