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1. Introduction. In the last decade, the presence of pointwise state inequal-
ity constraints in optimal control problems of partial differential equations (PDEs)
has opened up new challenging research directions in the development of numerical
algorithms. The main difficulty when solving these problems is due to the lack of
regularity of the Lagrange multipliers associated with the pointwise state constraints.
As originally noticed by Casas [6] (see also [1, 7]), the Lagrange multipliers associated
with the optimal solution are only (regular) Borel measures in general; see, e.g., [5, 19]
for further structural properties of the multiplier. This fact complicates the numerical
treatment considerably. First it raises the question of how to appropriately discretize
measure-valued quantities. Secondly, well known methods such as projected Newton
or primal-dual active set methods exhibit a mesh-dependent behavior.

In the recent past, there were two major efforts in devising algorithms of nonlinear
programming type to overcome the difficulties due to poor multiplier regularity. On
one hand, there is the Moreau-Yosida-based regularization technique of [18] which
removes the state inequality constraints from the set of explicit constraints. Rather it
adds an augmented Lagrangian-type penalty (respectively regularization) term to the
objective functional of the control problem. As a result, from the corresponding first
order necessary optimality conditions of the penalized problem one obtains a regular
approximation of the measure-valued Lagrange multiplier of the original problem. The
second approach [29], which we shall pursue here, consists of applying a Lavrentiev-
type regularization of the pointwise state constraints. In this case, differently from
the first approach, the pointwise constraints are kept as explicit constraints. Rather
these are transformed into mixed control-state constraints. For the latter constraint
type it is known [25, 27, 29] that the corresponding Lagrange multiplier enjoys better
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regularity properties than the original one. Compared to the Moreau-Yosida-based
technique, keeping the constraints explicit preserves the overall problem structure and
can be an advantage.

Throughout the present paper we, hence, focus on the following mixed control-
state constrained, or equivalently Lavrentiev-regularized state constrained, model
problem:

(P )





minimize J(u, y) := 1
2‖y − yd‖

2
L2 + α

2 ‖u‖
2
L2

over (u, y) ∈ L2(Ω) × H1
0 (Ω) ∩ C(Ω̄)

subject to Ay + d(·, y) = u in Ω,

ya ≤ εu(x) + y(x) ≤ yb for almost all (f.a.a.) x ∈ Ω,

where Ω ⊂ R
n is a bounded domain with a sufficiently regular boundary Γ = ∂Ω, and

A denotes a second order linear elliptic differential operator with sufficiently smooth
coefficients. Further, yd, α, the function d, ya < yb ∈ R, and ε are fixed given data
which will be specified shortly. We point out that ε is referred to as the Lavrentiev
parameter. If we set ε = 0, then we regain the original state constrained optimal
control problem. We further note that the subsequent considerations remain true for
state equations involving Neumann- or Robin-type boundary conditions instead of the
homogeneous Dirichlet boundary condition.

As noted earlier, problems of the type (P ) were considered in the literature re-
cently. In [29] it was shown that the Lagrange multiplier associated with the mixed
control-state constraint exists as a function in L2(Ω). Subsequently, for the numerical
solution of (P ) a short-step path-following interior-point method was proposed in [26].

Since it is known from the nonlinear programming literature (see, e.g., [31]) that
short-step variants of interior-point methods are usually not competitive in practice
and due to our previous experience that semismooth Newton methods, or in some
cases equivalently primal-dual active-set strategies, are highly efficient for control
constrained optimal control of elliptic PDEs, in contrast to [26] we focus here on
semismooth Newton-type methods for solving (P ). The latter motivation can be
substantiated by the observation that (P ) can easily be transformed into an optimal
control problem with pure pointwise control constraints. In fact, setting v := εu + y
and, hence, u = 1

ε (v − y), we obtain the following equivalent formulation:

(P̃ v)





minimize J̃(v, y) := 1
2‖y − yd‖

2
L2 + α

2ε2 ‖v − y‖2
L2

over (v, y) ∈ L2(Ω) × H1
0 (Ω) ∩ C(Ω̄),

subject to εAy + εd(·, y) + y = v in Ω,

ya ≤ v(x) ≤ yb f.a.a. x ∈ Ω.

It turns out that the transformed problem (P̃ v) is useful in both, the analysis of
the problem as well as the design and convergence analysis of algorithms. Indeed, we
will introduce a semismooth Newton method in function space for solving (P̃ v) and
prove its locally superlinear convergence.

Problem (P̃ v) is also useful when proving the mesh independent convergence of
a discrete version of the semismooth Newton method introduced in this paper. This
aspect is important since it guarantees a stable convergence behavior of the method
as the underlying mesh is refined. For smooth nonlinear operator equations, there is
an excellent body of work relying on Newton-Kantorovich [2] or Newton-Mysovskii
[12] theorems for establishing mesh independence of Newton’s method. We also refer
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to [30] for a recent affine invariant theory on asymptotic mesh independence which
considerably improves, e.g., [2]. Additional results in the context of optimal control
problems can be found in [3, 13]. In this context, in the presence of constraints
typically a generalized equation’s approach is considered with a smooth nonlinear
mapping. Thus, one is back at a smooth (set-valued) operator equation. For Lagrange-
Newton methods this approach analyses the outer linearization loop while the (exact)
solution of the constrained subproblems is assumed and their mesh independence
remains open. In sequential quadratic programming (SQP) approaches to constrained
optimal control problems this would refer to a mesh independent convergence of the
major (outer) iterates. However, the mesh independence of the solver of the quadratic
subproblems for computing update directions for the major iterates is not considered.
Our reformulation of (P̃ v), on the other hand, results in a nonsmooth (i.e., not Fréchet
differentiable) operator equation. As, for instance, Newton-Kantorovich or Newton-
Mysovskii results are not available in this case, our mesh independence analysis has
to rely on different tools. Here we use the proof technique of [20]; further see [16].
Referring back to the SQP or Lagrange-Newton perspective mentioned above, our
analysis can be used to study the mesh independence of semismooth Newton type
solvers for the constrained subproblems. This closes the gap in the earlier analysis
as in, e.g., [3] and yields a fully mesh independent method. We further mention that
corresponding fast local convergence and mesh-independence results are currently not
available for the short-step path-following interior-point techniques in [26].

The rest of the paper is organized as follows: In the next section we introduce some
notation and assumptions required throughout. Further we specify the finite element
discretization considered in this paper. It is based on [4], where convergence rates
for control constrained optimal control problems were shown. In section 3 we discuss
the first order conditions of a reduced version of (P̃ v) and introduce the semismooth
Newton methods for the continuous as well as for the discretized case, respectively.
Section 4 is devoted to our mesh-independence analysis. As the ultimate goal is to
solve the state constrained problem, i.e., ε = 0 in (P ), in section 5 we prove the strong
L2-convergence for ε → 0 of the regularized optimal controls to the optimal control
pertinent to (P ) with ε = 0. Finally, in section 6 we provide a report on numerical
test runs which also includes a validation of our theoretical results and a study of our
algorithm in the case of vanishing Lavrentiev-parameter.

2. Basics. We start by introducing the notation used throughout the paper.
Further we provide our working assumptions, and we specify the discretization concept
applied to (P̃ v) and its first order optimality system.

2.1. Assumptions and Notation. In what follows, we assume that Ω is a
convex bounded domain in R

n, n ∈ {2, 3}, with a C1,1 boundary Γ. Concerning the
data specified in (P̃ v) we suppose that the desired state yd lies in L2(Ω), the bounds
are ya, yb ∈ R with ya < yb, and α > 0 represents the cost of the control. By ‖·‖L2 , as
used in the objective of (P̃ v), and (·, ·)L2 we denote the L2(Ω)-norm and the L2(Ω)-
inner product, respectively. We use the analogous notation for other function space
norms. The operator A denotes a second-order elliptic partial differential operator of
the form

Ay(x) = −

n∑

i,j=1

Di(aij(x)Djy(x)),
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where the coefficient functions aij belong to C0,1(Ω̄) and satisfy the ellipticity condi-
tion

n∑

i,j=1

aij(x)ξiξj ≥ m0‖ξ‖
2
2 ∀(ξ, x) ∈ R

n × Ω̄

for some constant m0 > 0. The function d(x, y) is a Carathéodory function from
Ω̄ × R into R, i.e., for every fixed y ∈ R the function d(·, y) is measurable, and d is
continuous with respect to y for almost every fixed x ∈ Ω. Furthermore, we assume
that for every x ∈ Ω the function d(x, ·) is of class C2 and Dyd(x, ·) is nonnegative.
We also suppose that for all K > 0 there exists a constant CK > 0 such that

|d(x, y)| + |Dyd(x, y)| + |Dyyd(x, y)| ≤ CK ,

|Dyyd(x, y1) − Dyyd(x, y2)| ≤ CK |y1 − y2|

for all (x, y, y1, y2) ∈ Ω × [−K, K]3.
From the Sobolev embedding theorem we obtain the continuous embedding

H1
0 (Ω) →֒ Lp(Ω)

for p = 6 if n = 3 and p ∈ [6,∞) if n = 2, i.e., there exist positive real numbers sp

such that

‖ · ‖Lp ≤ sp ‖ · ‖H1 .

For later use, we also introduce the solution operator G : L2(Ω) → H1
0 (Ω)∩ C(Ω̄)

that assigns to every element v ∈ L2(Ω) the solution y = y(v) ∈ H1
0 (Ω) ∩ C(Ω̄) of the

transformed state equation

(2.1) εAy + εd(·, y) + y = v in Ω, y = 0 on Γ.

We further set S = ı0G, where ı0 is the compact embedding operator from H1
0 (Ω) to

L2(Ω). Now we can express (P̃ v) as follows:

(P v)

{
minimize f(v) := 1

2‖S(v) − yd‖
2
L2 + α

2ε2 ‖v − S(v)‖2
L2 over v ∈ L2(Ω),

subject to v ∈ Vad,

where the feasible set Vad is defined by

Vad = {v ∈ L2(Ω) | ya ≤ v(x) ≤ yb f.a.a. x ∈ Ω}.

2.2. Discretization. For the discretization of our model problem we employ
the finite element method as outlined in [4]. In fact, let (Th)h>0 denote a family
of triangulations of Ω̄ with h, the mesh-size of the underlying mesh, being equal to
the maximum diameter over all elements in Th. This yields Ω̄h =

⋃
T∈Th

T with Ωh

denoting the interior of Ω̄h and Γh its boundary. For the results in [4] to be applicable
we require the following modification of the triangulation close to the boundary of Ω:
For n = 2 we replace every boundary triangle T of Th by another triangle T̂ ⊂ Ω with
a curved boundary. For its precise construction we follow [9], where the edge between
the two boundary nodes of T is replaced by the part of the boundary of Ω connecting
these nodes and forming a triangle with the remaining interior sides of T . By T̂h,
we denote the union of these curved boundary triangles with the interior triangles in
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Ω of Th. In this way we obtain Ω̄ = ∪T̂∈T̂h
T̂ . For n = 3, we use tetrahedra with

the analogous modification close to Γ. Based on this construction we now define the
discrete control and state spaces, respectively, by

Vh := {vh ∈ L∞(Ω) | vh|T̂ is constant ∀ T̂ ∈ T̂h},

Yh = {yh ∈ C(Ω̄) ∩ H1
0 (Ω) | yh|T ∈ P1∀ T ∈ Th and yh = 0 on Ω̄\Ωh}.

Above, P1 denotes the space of polynomials of degree less than or equal to one. The
spaces Vh and Yh are equipped with the L2-norm respectively the H1

0 -norm. For later
use, we also introduce the piecewise linear finite element basis {φ1(x), ..., φmh

(x)} of
Yh.

We are now ready to formulate the discrete approximation of (P v):

(P v
h )

{
minimize fh(vh) := 1

2‖Sh(vh) − yd‖
2
L2 + α

2ε2 ‖vh − Sh(vh)‖2
L2 over vh ∈ Vh

subject to ya ≤ vh(x) ≤ yb f.a.a. x ∈ Ω,

where Sh = ı0Gh : Vh → L2(Ω) with Gh denoting the discrete solution operator
corresponding to the discrete state equation. It assigns to every element vh ∈ Vh the
solution yh = yh(vh) ∈ Yh of

εa(yh, φi) + (εd(·, yh) + yh, φi)L2 = (vh, φi)L2 ∀i ∈ {1, ..., mh}

with the bilinear form a : Yh × Yh → R defined by

a(y, z) =

∫

Ω

(

n∑

i,j=1

aij(x)Diy(x)Djz(x)) dx.

For our mesh-independence analysis in section 4 we have to work with the interpo-
lation operator corresponding to our piecewise constant finite element discretization.
Hence, we next introduce this operator and collect some of its properties. The inter-
polation operator Πh ∈ L(L2(Ω), Vh) assigns to every element v ∈ L2(Ω) a piecewise
constant function on Ω. For its definition we follow [4]:

(Πhv)(x) =

{
(πhv)(x) x ∈ T,

(πhv)(x0) x ∈ T̂ \ T,

where x0 is the projection of x onto the boundary of the triangle and the operator
πh : L2(Ω) → L2(Ω) is defined by

(πhv)|T =
1

|T |

∫

T

v(x) dx

for T ∈ Th and T̂ ∈ T̂h. In the following sections, we will make use of the following
estimates:

‖Πhw‖Lq ≤ ‖w‖Lq for all w ∈ Lq(Ω), q ∈ [2,∞],(2.2)

‖w − Πhw‖L2 ≤ ch‖w‖H1 for all w ∈ H1(Ω).(2.3)

with some positive constant c. For more details we refer the reader to [20] and the
references therein.
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3. Optimality conditions and semismooth Newton methods. We now
turn to the derivation of first- and second-order optimality conditions for (P v). Then,
a reformulation of the first order conditions is the starting point for our semismooth
Newton framework.

3.1. First- and second-order optimality. The assumptions invoked in the
previous section imply the existence of a solution to (P v); see [4]. Note that due
to the non-convexity of the objective functional f , we cannot expect uniqueness of
the solution. Further, the methods we are about to propose typically find only local
solutions. For this purpose, recall that a L2-function v∗ is said to be a local solution
of (P v) if there exists a positive real number r such that

f(v) ≥ f(v∗) ∀v ∈ Vad ∩ B̄r := {v ∈ L2(Ω) : ‖v − v∗‖L2 ≤ r}.

The first derivative of the objective function f of (P v) at v in an arbitrary direction
w ∈ L2(Ω) is given by

f ′(v)w = (S(v) − yd +
α

ε2
(S(v) − v), S′(v)w)L2 +

α

ε2
(v − S(v), w)L2 .

By standard arguments, this can equivalently be expressed as

(3.1) f ′(v) = p(v) −
α

ε2
y(v) +

α

ε2
v,

where p = p(v) ∈ H1
0 (Ω) ∩ C(Ω̄) is defined as the solution of the following adjoint

(state) equation

(3.2) εA∗p + εdy(·, y(v))p + p = y(v) − yd +
α

ε2
(y(v) − v) in Ω, p = 0 on Γ.

Here, A∗ is the adjoint operator of A, and y(v) denotes the state associated to v. The
first-order necessary optimality condition for (P v) at a (local) solution v∗ ∈ Vad is
then given by the variational inequality

(f ′(v∗), v − v∗)L2 ≥ 0, ∀v ∈ Vad.

By (3.1), this is equivalent to

(p∗ −
α

ε2
y∗ +

α

ε2
v∗, v − v∗)L2 ≥ 0 ∀v ∈ Vad,

where y∗ is the state associated to v∗ ∈ Vad and p∗ = p(v∗) is the adjoint state
satisfying (3.2) at (y, v) = (y∗, v∗). From this, standard arguments (see, e.g., [23])
yield the following projection formula for a local solution v∗:

(3.3) v∗ = P[ya,yb](y
∗ −

ε2

α
p∗),

where P[ya,yb](v)(x) := min(yb, max(ya, v(x))) denotes the projection operator from
L2(Ω) onto L∞(Ω, [ya, yb]). Defining the operator Ψ : L2(Ω) → L2(Ω) by

(3.4) Ψ(v) := v − P[ya,yb](y(v) −
ε2

α
p(v)).

then, due to (3.3), the first-order necessary optimality condition for (P v) can be
written as

(3.5) Ψ(v∗) = 0 almost everywhere (a.e.) in Ω.
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We next turn to the discrete problem (P v
h ). Similarly to the continuous case, our

assumptions guarantee the existence of at least one solution v∗h ∈ Vh. Analogously,
the first-order optimality condition can be written as

(3.6) Ψh(v∗h) = 0 a.e. in Ω,

where Ψh : Vh → Vh denotes the discrete analogue of Ψ. It is defined by

Ψh(vh) := vh − P[ya,yb](Πhyh(vh) −
ε2

α
Πhph(vh)).

Here, yh(vh) = Sh(vh), and ph(vh) ∈ Yh denotes the discrete adjoint state satisfying

εa(ph, φi) + (εdy(·, yh(vh))ph + ph, φi)L2 = (yh(vh) − yd +
α

ε2
(yh(vh) − vh), φi)L2

for all i ∈ {1, ..., mh}. This setting is analogous to the one considered in [4].

Since (P v) is not necessarily convex, the first-order optimality condition (3.4) is
not sufficient for local optimality. Under the following second-order sufficient opti-
mality condition, the local optimality can be guaranteed.

Definition 3.1 (Second-order sufficient conditions; cf. [9]). The point v∗ ∈
L2(Ω) is said to satisfy the second-order sufficient condition if there exist κ > 0 and
τ > 0 such that

(3.7) f ′′(v∗)w2 ≥ κ‖w‖2
L2

holds true for all w ∈ L∞(Ω) satisfying

(3.8) w(x)





≥ 0 if v∗(x) = ya,
≤ 0 if v∗(x) = yb,
= 0 if |p∗(x) + αε−2(v∗(x) − y∗(x))| ≥ τ.

This condition will be essential when proving the mesh-independence principle in
section 4. We point out that (3.7) can be expressed in terms of the PDE. It is
equivalent to

L′′(y∗, v∗, p∗)[y, w]2 ≥ κ‖w‖2
L2

for all y solving the linearized PDE

Ay +
1

ε
y + dy(·, y∗)y =

1

ε
w,

where w satisfies the conditions (3.8). In this setting, L is defined by

L(y, v, p) = J̃(v, y) − 〈Ay, p〉 − (d(·, y), p)L2 −
1

ε
(y − v, p)L2 .

For details we refer to [28, Theorem 4.23]; related techniques for the control of semi-
linear equations can be found in [8, 10].
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3.2. Semismooth Newton algorithm. The nonlinear and nonsmooth opera-
tor equation

Ψ(v) = 0

will now be solved by a semismooth Newton method. Our development is based on
the following generalized differentiability notion; compare [11, 17].

Definition 3.2. Let X, Y be Banach spaces and U be an open domain in X. A
function F : U → Y is said to be semismooth (or Newton differentiable) in U if there
exists a (possibly set-valued) mapping ∂F : U ⇉ L (X, Y ) such that

(3.9) sup
V ∈∂F (x+s)

‖F (x + s) − F (x) − V s‖Y = o(‖s‖X) as ‖s‖X → 0

for all x ∈ U . We call ∂F the Newton differential, and its elements are referred to as
Newton maps.

We point out that in [22] a notion similar to the one in Definition 3.2 is introduced
and the name Newton maps for elements of the resulting generalized differential is
coined.

For an application of this concept, let us consider the operator H : Lq1(Ω) →
Lq1(Ω), H(w) = w − P[a,b](−C(w)), where P[a,b] denotes the projection onto [a, b],
with a, b ∈ R, a < b, and C : Lq1(Ω) → Lq1(Ω) is a continuously Fréchet differentiable
mapping. Moreover, we assume that C is locally Lipschitz continuous from Lq1(Ω) to
Lq2(Ω) for some q2 > q1 ≥ 1. Then, as demonstrated, e.g., in [17], H is semismooth,
i.e., for all w ∈ Lq1(Ω) we have

sup
V ∈∂H(w+s)

‖H(w + s) − H(w) − V s‖Lq1 = o(‖s‖Lq1 ) as ‖s‖Lq1 → 0.

A class of corresponding Newton maps is given by

(3.10) ∂̂H
ζ1,ζ2

(w) = {id +D(w)C′(w)} ⊂ ∂H(w),

where C′(w) denotes the Fréchet derivative of C at w, and the operator D : Lq1(Ω) →
L∞(Ω) satisfies

D(w)(x)





= 0 if − C(w)(x) /∈ [a, b],

∈ [ζ1, ζ2] if − C(w)(x) ∈ {a, b},

= 1 if − C(w)(x) ∈ (a, b).

for some arbitrarily fixed ζ1, ζ2 ∈ R with ζ1 ≤ ζ2. In what follows, we frequently

use the particular selection ∂̂H := ∂̂H
0,0

, which is obtained from (3.10) by setting
ζ1 = ζ2 = 0.

A special choice for H : Lq1(Ω) → Lq1(Ω) is given by w := v and

(3.11) H(v) := Ψ(v) = v − P[ya,yb](y(v) −
ε2

α
p(v)) with q1 = 2,

which corresponds to our first order condition (3.4). As we shall see from Lemma 3.1
and 3.2 below, the operator

C(v) :=
ε2

α
p(v) − y(v) =

ε2

α
p(v) − S(v)
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satisfies the above requirements such that Ψ : L2(Ω) → L2(Ω) turns out to be Newton
differentiable in L2(Ω). For the state considered as a function of the control variable
we have the following result.

Lemma 3.1. Let h > 0. Then the operators G : L2(Ω) → H1
0 (Ω) ∩ C(Ω̄) and

Gh : Vh → Yh are continuously Fréchet differentiable and Lipschitz continuous with
Lipschitz constants independent of h. Moreover, for every bounded set U ⊂ L2(Ω), the
first Fréchet derivatives G′(v) and G′

h(vh) are Lipschitz continuous on U and U ∩Vh,
respectively, with a Lipschitz constant independent of h.

Proof. In [20, Theorems 7 and 9] the assertion was proved for the semilinear
elliptic PDE

Ãy + d̃(y) = v in Ω, y = 0 on Γ,

where Ã is a second order linear elliptic partial differential operator and d̃ is a function
with the same properties with respect to the second argument as d from our context.
The assertions in [20, Theorems 7 and 9] remain true as long as d̃ : Ω × R → R has
the same properties as d. Thus, setting Ã = εA + id and d̃ = εd, we can apply [20,
Theorems 7 and 9] in order to obtain the assertion.

We have an analogous result when considering the adjoint state as a function of
the control variable. For its proof, as for the previous lemma, we refer to [20, Theorem
10] with the analogous settings from the proof of Lemma 3.1.

Lemma 3.2. Let U be a bounded set in L2(Ω) and h > 0. Then the adjoint
states considered as function of the control v and its discrete counterpart vh, i.e.,
p : L2(Ω) → H1

0 (Ω) and ph : Vh → Yh, are Lipschitz continuous and bounded on U
and U ∩ Vh, respectively, with a Lipschitz constant and a bound independent of h.
Moreover, the first Fréchet derivatives p′(v) and p′h(v) are Lipschitz continuous on U
and U ∩ Vh, respectively, with a Lipschitz constant independent of h.

As noted above, we have that Ψ is semismooth, and a particular selection of
Newton maps is given by

(3.12) ∂̂Ψ
ζ1,ζ2

(v) = {id +z(v)(−S′(v) +
ε2

α
p′(v))},

with z : L2(Ω) → L∞(Ω) satisfying

z(v)(x)





= 0 if (S(v) − ε2

α p(v))(x) /∈ [ya, yb],

∈ [ζ1, ζ2] if (S(v) − ε2

α p(v))(x) ∈ {ya, yb},

= 1 if (S(v) − ε2

α p(v))(x) ∈ [ya, yb].

Analogously, we obtain that Ψh is semismooth, and a selection of Newton maps is
given by

(3.13) ∂̂Ψ
ζ1,ζ2

h (vh) = {idh +zh(vh)(−ΠhS′
h(vh) +

ε2

α
Πhp′h(vh)},

with zh : Vh → Vh satisfying

zh(vh)(x)





= 0 if (Sh(vh) − ε2

α ph(vh))(x) /∈ [ya, yb],

∈ [ζ1, ζ2] if (Sh(vh) − ε2

α ph(vh))(x) ∈ {ya, yb},

= 1 if (Sh(vh) − ε2

α ph(vh))(x) ∈ [ya, yb].
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Now we have all the ingredients at hand for defining the semismooth Newton
methods for solving

Ψ(v) = 0 and Ψh(vh) = 0,

respectively.
Algorithm 3.1 (Semismooth Newton method; continuous version).
(i) Choose v0 ∈ L2(Ω) and set k = 0.

(ii) Compute V k ∈ ∂̂Ψ(vk).
(iii) Find vk+1 ∈ L2(Ω) such that V k(vk+1 − vk) = −Ψ(vk),
(iv) If Ψ(vk+1) = 0 then stop, else set k := k + 1 and return to (ii).

We point out that in step (ii) we could have chosen ∂Ψ(vk) instead of ∂̂Ψ(vk).
Then the following theory would still hold true. Our choice in step (ii), however, is
motivated by the fact that in this case the semismooth Newton algorithm for solving
Ψ(v) = 0 becomes a primal-dual active-set strategy, i.e., the special Newton map for
the projection operator implies an active and inactive set prediction. In this context
we call {x ∈ Ω : v∗(x) ∈ (ya, yb)} the inactive set at a local solution v∗ of (P v). Its
complement in Ω is called the active set at v∗. The primal-dual active-set method has
several numerical advantages including the fact that in every Newton step a linear
system has to be solved only on the currently inactive set. To explain this in more
detail, note that the generalized linearization of (3.11) can be decomposed according
to the following partition of Ω into the active and inactive set estimates Ak = Ak

a∪Ak
b

and Ik:

Ak
a := {x ∈ Ω : −C(vk)(x) < ya},

Ak
b := {x ∈ Ω : −C(vk)(x) > yb},

Ik := Ω \ Ak.

Then, due to the structure of the mapping Ψ and the definition of ∂̂Ψ(vk), we infer

vk+1 = ya a.e. on Ak
a, vk+1 = yb a.e. on Ak

b

and further

vk+1 + C′(vk)(vk+1 − vk) = −C(vk) on Ik.

Hence, on the active set estimate Ak the new control vk+1 is obtained by setting the
variable to either the upper or lower bound. On the current approximation of the
inactive set a linear equation has to be solved. For more details on the active-set
technique, we refer the reader to [17].

Analogously, we solve the discrete problem by the following discrete semismooth
Newton method.

Algorithm 3.2 (Semismooth Newton method; discrete version).
(i) Choose v0

h ∈ Vh and set k = 0.

(ii) Compute V k
h ∈ ∂̂Ψh(vk

h).
(iii) Find vk+1

h ∈ Vh such that V k
h (vk+1

h − vk
h) = −Ψh(vk

h),

(iv) If Ψh(vk+1
h ) = 0 then stop, else set k := k + 1 and return to (ii).

Of course, the stopping conditions Ψ(vk+1) = 0 and Ψh(vk+1
h ) = 0 of Algo-

rithm 3.1 and 3.2, respectively, are of theoretical importance only. In our numerical
practice we stop Algorithm 3.2 as soon as ‖Ψh(vk+1

h )‖L2 drops below a user-specified
stopping tolerance.
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Concerning the local convergence of Algorithm 3.1 and Algorithm 3.2, respec-
tively, we remark that a straightforward application of the convergence result [17,
Theorem 1.1] yields the locally superlinear convergence provided the Newton maps
are invertible with uniformly bounded inverses in a neighborhood of local solutions
to Ψ(v) = 0 and Ψh(vh) = 0, respectively.

We end this section by providing a sufficient condition which guarantees uniformly

bounded inverses of the Newton maps in ∂̂Ψ(v) for all v in a sufficiently small neigh-
borhood of a local solution v∗ of Ψ(v) = 0. In fact, suppose that (P v) satisfies the
following second order sufficient condition.

Definition 3.3. For a local solution v∗ of Ψ(v) = 0, v ∈ L2(Ω), there exists a
constant κ̂ > 0 such that

(3.14) f ′′(v∗)w2 ≥ κ̂‖w‖2
L2 for all w ∈ L2(Ω).

This condition is stronger than the second order sufficient condition of Definition 3.1.
We use this stronger version to have its stability with respect to L2-perturbations of
v∗; see (3.18) below. Note that due to (3.1) we have

f ′′(v∗)w2 = (w, [p′(v∗) −
α

ε2
S′(v∗) +

α

ε2
id]w)L2 .(3.15)

Assuming that (3.14) holds true, then after multiplying (3.15) by α−1ε2 we obtain

(3.16) (w, [
ε2

α
p′(v∗) − S′(v∗) + id]w)L2 ≥

ε2κ̂

α
‖w‖2

L2 ∀w ∈ L2(Ω).

Hence, the left hand side in (3.16) induces a positive definite bilinear form on L2(Ω)×
L2(Ω). From [28, Lemma 4.24] we infer

(3.17) |(f ′′(v∗) − f ′′(v))w2| ≤ c‖v − v∗‖L2‖w‖2
L2 ∀w ∈ L2(Ω)

for all v ∈ L2(Ω) sufficiently close to v∗ ∈ L2(Ω). Here, c denotes a positive constant.
We point out that general problems require a L2-L∞-norm gap, i.e., v∗, v ∈ L∞(Ω)
and, hence, ‖v − v∗‖L2 replaced by ‖v − v∗‖L∞ in (3.17). This is due to the fact
that we cannot expect twice differentiability of f in L2 in these cases; see [21] or [28,
Lemma 4.24]. In our context, however, it is well known that the solution operators
of the state as well as the adjoint equation are continuous from L2(Ω) to C(Ω̄) for
Ω ⊂ R

n with n < 4. As a result, here we can work with (3.17). In conclusion
we have that there exist a radius r > 0 and a constant κr > 0 such that for all
v ∈ {v ∈ L2(Ω) : ‖v − v∗‖L2 ≤ r} the following condition holds true:

(3.18) (w, [
ε2

α
p′(v) − S′(v) + id]w)L2 ≥ κr‖w‖2

L2 ∀w ∈ L2(Ω).

Therefore, from the structure of the Newton maps of Ψ̂(v) (cf. (3.12) with ζ1 = ζ2 = 0)
and the Lax-Milgram lemma we infer that in a neighborhood of a local solution v∗

satisfying the second order conditions in Definition 3.3 step (iii) of Algorithm 3.1 is
well-defined, i.e., the Newton maps are uniformly invertible in a neighborhood of v∗.

Finally, the properties of our discretization (see also (A1)–(A3) in the next sec-
tion) imply that for sufficiently small mesh sizes h step (iii) of the discrete method,
Algorithm 3.2, is also well-defined in a neighborhood of a local solution vh of the
discrete problem Ψh(vh) = 0 satisfying ‖vh − v∗‖L2 → 0 as h → 0. This, again, yields
uniformly bounded (also with respect to h) inverses of the discrete Newton maps in
a sufficiently small neighborhood of vh.
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4. Mesh-independence principle. In [20] the mesh-independence of semis-
mooth Newton methods for solving control constrained optimal control problems of
semilinear elliptic PDEs was proven. Due to the transformation of the mixed control-
state constrained problem (P ) into a purely control constrained problem (P v), for
proving the mesh-independence of Algorithm 3.2 we can exploit the results of [20].
However, let us point out that our transformed problem is more complicated since
the nonlinear solution operator occurs in both terms of the objective function.

For the subsequent discussion let v∗ be a local solution of (P v) that satisfies the
second order sufficient optimality condition given in Definition 3.1. Then, following
[4], we can find a sequence (vh)h>0 of locally optimal controls for (P v

h ) converging
to the local solution v∗ as h tends to zero. In what follows, we consider only this
sequence (vh)h>0. Furthermore, we impose the following assumption:

(SC)
meas{x ∈ Ω | ya − y∗(x) + ε2

α p∗(x) = 0} = 0,

meas{x ∈ Ω | y∗(x) − ε2

α p∗(x) − yb = 0} = 0.

Observe that (SC) requires v∗ to satisfy a strict complementarity condition, i.e., on
the set where v∗ hits one of the bounds ya or yb, the quantity p∗ + α ε−2(v∗ − y∗),
which is related to the Lagrange multiplier for the pointwise control constraint in
(P v), can only vanish on a set of measure zero. In fact, for the first set in (SC) note
that v∗(x) = ya implies

p∗(x) +
α

ε2
(ya − y∗(x)) = 0 ⇔ ya − y∗(x) +

ε2

α
p∗(x) = 0,

which corresponds to the definition of the first set in (SC). A similar reasoning yields
the second set.

The mesh-independence result in [20] relies on the following assumptions: For
some p > 2 there holds

(A1) limh→0 ‖Ch(vh) − C(v∗)‖Lp = 0;
(A2) the discretization family is locally Lipschitz uniform, i.e., there exist positive

real numbers h0, δ0 and LC such that

‖C(v1) − C(v2)‖Lp ≤ LC‖v
1 − v2‖L2 ∀v1, v2 ∈ L2(Ω) with ‖v1 − v2‖L2 ≤ δ0

and

‖Ch(v1
h) − Ch(v2

h)‖Lp ≤ LC‖v
1
h − v2

h‖L2 ∀v1
h, v2

h ∈ Vh with ‖v1
h − v2

h‖L2 ≤ δ0,

for all h ≤ h0;
(A3) the discretization family has the uniform linear approximation property, i.e.

C and Ch, h ≤ h0, are Fréchet differentiable in a neighborhood of v∗ and vh,
respectively, and there exists a function ρ : [0, δ0) → [0,∞) such that

lim
t→0

ρ(t)

t
= 0,

‖C(v) − C(v∗) − C′(v)(v − v∗)‖L2 ≤ ρ(‖v − v∗‖L2)

∀v ∈ L2(Ω) with ‖v − v∗‖L2 ≤ ρ0,

‖Ch(vh) − Ch(v∗h) − C′
h(vh)(vh − v∗h)‖L2 ≤ ρ(‖vh − v∗h‖L2)

∀vh ∈ L2(Ω) with ‖vh − v∗h‖L2 ≤ ρ0, h ≤ h0.



13

Under these assumptions, in [20] the following mesh-independence result for the Al-
gorithms 3.1 and 3.2 was shown.

Theorem 4.1. Let the assumptions (SC) and (A1)–(A3) be satisfied. Further
suppose that there exist δ > 0, κV > 0 and h1 ≤ h0 such that

(4.1) sup{‖V −1
h ‖L2→L2 |Vh ∈ ∂̂Ψ(vh + sh) with ‖sh‖L2 ≤ δ} ≤ κV ∀h ≤ h1.

Then, for any given θ ∈ (0, 1), there exist real numbers δ̄ > 0 and h̄ > 0 such that the
iterates of Algorithm 3.1 and Algorithm 3.2 satisfy

‖vk+1 − v∗‖L2 ≤ θ‖vk − v∗‖L2,(4.2)

‖vk+1
h − vh‖L2 ≤ θ‖vk

h − vh‖L2 for all 0 < h ≤ h̄(4.3)

provided that max{‖v0 − v∗‖L2 , ‖v0
h − vh‖L2} ≤ δ̄.

Our goal is now to verify the assumptions (A1)–(A3) in the present context. Then,
we can immediately apply Theorem 4.1 and, provided the solution to the continuous
problem (P v) satisfies (SC) (recall that (4.1) was discussed at the end of the previous
section), we can conclude that Algorithm 3.2 satisfies the above mesh-independence
principle. For this purpose we make use of the following result which was established
in [4, Theorems 4.2 and 5.1]. Here and below, c typically denotes a generic positive
constant which can take different values on different occasions.

Theorem 4.2. For sufficiently small h > 0 the following estimates holds true:

‖y(v∗) − yh(vh)‖H1 + ‖p(v∗) − ph(vh)‖H1 ≤ c(h + ‖v∗ − vh‖L2),(4.4)

‖v∗ − vh‖L2 ≤ ch.(4.5)

With these tools at hand, we can now verify assumptions (A1)–(A3).

Proposition 4.1. Under the assumptions of section 2.1, (A1) is satisfied.

Proof. The assertion can easily be shown by utilizing the inequalities (2.2) and
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(2.3) as well as Theorem 4.2. In fact, for sufficiently small h > 0 we have

‖Ch(vh)−C(v∗)‖Lp = ‖Πh
ε2

α
ph(vh) − Πhyh(vh) −

ε2

α
p(v∗) + y(v∗)‖Lp

≤
ε2

α
‖Πh(ph(vh) − p(v∗))‖Lp + ‖Πh(y(v∗) − yh(vh))‖Lp

+ ‖y(v∗) −
ε2

α
p(v∗) − Πh(y(v∗) −

ε2

α
p(v∗))‖Lp

≤max{1,
ε2

α
}(‖ph(vh) − p(v∗)‖Lp + ‖y(v∗) − yh(vh)‖Lp)

+ ‖y(v∗) −
ε2

α
p(v∗) − Πh(y(v∗) −

ε2

α
p(v∗))‖

2
p

L2 ·

· ‖y(v∗) −
ε2

α
p(v∗) − Πh(y(v∗) −

ε2

α
p(v∗))‖

p−2

p

L∞

≤max{1,
ε2

α
}spc(h + ‖v∗ − vh‖L2)

+ ch
2
p ‖y(v∗) −

ε2

α
p(v∗)‖

2
p

H1‖y(v∗) −
ε2

α
p(v∗) − Πh(y(v∗) −

ε2

α
p(v∗))‖

p−2

p

L∞

≤c sp max{1,
ε2

α
}(h + ch) + ch

2
p ‖y(v∗) −

ε2

α
p(v∗)‖

2
p

H1 ·

· ‖y(v∗) −
ε2

α
p(v∗) − Πh(y(v∗) −

ε2

α
p(v∗))‖

p−2

p

L∞ ,

which converges to zero as h → 0. Note that here we also use (2.2).

We continue with (A2).

Proposition 4.2. Under the assumptions of section 2.1, (A2) is satisfied.

Proof. We start by choosing a mesh-size h0 > 0, a radius δ0 > 0 and a bounded
set U ⊂ L2(Ω) such that

‖v − v∗‖L2 ≤ δ0 ⇒ v ∈ U, and

‖v − vh‖Vh
≤ δ0 ⇒ v ∈ U ∩ Vh ∀ 0 < h ≤ h0.

Next, by Lemma 3.1 and Lemma 3.2, we can find a constant c > 0 independent of
the choice of h such that for j ∈ {1, 2}

‖y(v1) − y(v2)‖H1 ≤ c‖v1 − v2‖L2 for all vj ∈ U,

‖yh(v1
h) − yh(v2

h)‖Yh
≤ c‖v1

h − v2
h‖Vh

for all vj
h ∈ U ∩ Vh,

‖p(v1) − p(v2)‖H1 ≤ c‖v1 − v2‖L2 for all vj ∈ U,

‖ph(v1
h) − ph(v2

h)‖Yh
≤ c‖v1

h − v2
h‖Vh

for all vj
h ∈ U ∩ Vh.

Hence, for all vj ∈ U , vj
h ∈ U ∩ Vh, j ∈ {1, 2}, and 0 < h ≤ h0, we get

‖C(v1) − C(v2)‖Lp = ‖
ε2

α
p(v1) − y(v1) −

ε2

α
p(v2) + y(v2)‖Lp

≤ sp
ε2

α
(‖p(v1) − p(v2)‖H1 + ‖y(v2) − y(v1)‖H1)

≤ sp c(1 +
ε2

α
)‖v1 − v2‖L2 .
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Similarly, for the discrete setting we obtain

‖Ch(v1
h) − Ch(v2

h)‖Lp ≤ sp ‖Πh(
ε2

α
ph(v1

h) − yh(v1
h) −

ε2

α
ph(v2

h) + yh(v2
h))‖Yh

≤ sp c(1 +
ε2

α
)‖v1

h − v2
h‖L2 ,

where we used (2.2) to obtain the last inequality above.
Finally, we verify assumption (A3).
Proposition 4.3. Under the assumptions of section 2.1, (A3) is satisfied.
Proof. For the verification of (A3) we utilize the subset U ⊂ L2(Ω) defined in

the proof of the preceding proposition. Again, by Lemma 3.1 and Lemma 3.2, there
exists a constant c > 0 independent of the choice of h such that for j ∈ {1, 2}

‖S′(v1) − S′(v2)‖H1 ≤ c‖v1 − v2‖L2 for all vj ∈ U,

‖S′
h(v1

h) − S′
h(v2

h)‖Yh
≤ c‖v1

h − v2
h‖Vh

for all vj
h ∈ U ∩ Vh,

‖p′(v1) − p′(v2)‖H1 ≤ c‖v1 − v2‖L2 for all vj ∈ U,

‖p′h(v1
h) − p′h(v2

h)‖Yh
≤ c‖v1

h − v2
h‖Vh

for all vj
h ∈ U ∩ Vh.

As a consequence, for arbitrary v ∈ U and vh ∈ U ∩ Vh we obtain

‖C(v) − C(v∗) − C′(v)(v − v∗)‖L2

= ‖

∫ 1

0

(C′(v∗ + t(v − v∗)) − C′(v))(v − v∗) dt‖L2

≤

∫ 1

0

‖
ε2

α
p′(v∗ + t(v − v∗)) − S′(v∗ + t(v − v∗))−

ε2

α
p′(v) + S′(v)‖L2‖v − v∗‖L2dt

≤
ε2

α

∫ 1

0

‖p′(v∗ + t(v − v∗)) − p′(v)‖H1‖v − v∗‖L2 dt

+

∫ 1

0

‖S′(v) − S′(v∗ + t(v − v∗))‖H1‖v − v∗‖L2 dt

≤(1 +
ε2

α
)c

∫ 1

0

(1 − t)‖v − v∗‖2
L2 dt

=
c

2
(1 +

ε2

α
)‖v − v∗‖2

L2

=:ρ(‖v − v∗‖L2).

This yields ρ(t) := c
2 (1 + α−1 ε2)t2. By using (2.2), for the approximation in the

discrete case a similar calculation can be carried out yielding the same choice for
ρ with a possibly different constant c. Now, taking the larger of the two constants
completes the proof.

In conclusion, we have shown that (A1)–(A3) hold true for (P v) respectively (P v
h ).

Hence, if v∗ satisfies (SC), then, from Theorem 4.1, we conclude that the convergence
behavior of Algorithm 3.2 is mesh-independent.

5. Passage to the limit ε → 0. In the previous sections we focused on the
investigation of (P ) and its reformulation (P v) for a fixed Lavrentiev-parameter ε > 0.
Now we study the convergence behavior of the sequence of optimal controls {uε}ε>0

as ε ↓ 0. For this purpose we find it convenient to refer to (P ) as (Pε) in order to
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make the dependence of the problem on ε transparent. The convergence for ε ↓ 0
has not been studied for a semilinear state equation in the literature so far, and it is
complicated by the involved nonlinearity and the mixing of control and state variables
within the explicit inequality constraints. Our main result states that, as ε ↓ 0, {uε}
converges strongly in L2(Ω) to an optimal solution of the original unregularized state
constrained problem

(P0)





minimize J(u, y) := 1
2‖y − yd‖

2
L2 + α

2 ‖u‖
2
L2

over (u, y) ∈ L2(Ω) × H1
0 (Ω) ∩ C(Ω̄)

subject to Ay + d(·, y) = u in Ω,

ya ≤ y(x) ≤ yb for almost all (f.a.a.) x ∈ Ω,

where we assume that yb ≥ 0 ≥ ya and yb > ya. Moreover we suppose that d(·, 0) = 0.
Alternatively, the latter assumption can be replaced by the requirement that there
exists a feasible point (û, ŷ) ∈ L2(Ω)×H1

0 (Ω)∩C(Ω̄) for (Pε) for all sufficiently small
ε ≥ 0.

In what follows, let G0 : L2(Ω) → H1
0 (Ω) ∩ C(Ω̄) denote the solution operator of

the state equation in (P0) and S0 = ı0G0. It can be shown that G0 and G0,h satisfy
the analogue of Lemma 3.1. Further, let u∗ ∈ L2(Ω) be an optimal solution of the
unregularized problem (P0).

Definition 5.1 (Linearized Slater condition). We say that u∗ ∈ L2(Ω) satisfies
the linearized Slater condition, if there exists a function u0 ∈ L∞(Ω) such that

(5.1) ya + δ ≤ G0(u
∗) + G′

0(u
∗)u0 ≤ yb − δ ∀x ∈ Ω,

for some fixed δ > 0.
Notice the L2-L∞-norm gap involved in the definition of the linearized Slater con-
dition. It is necessitated by the pointwise constraint and will be of use in the proof
of Theorem 5.1 below. Based on this definition, for the remainder of this section we
invoke the following assumption.

Assumption 5.1. There exists an optimal solution u∗ ∈ L2(Ω) of (P0), which
satisfies the linearized Slater condition. Let u0 ∈ L∞(Ω) denote the corresponding
interior (Slater) point.

Now, let {εn} be a sequence of positive numbers converging to zero. By {un} we
denote a sequence of global solutions associated to (Pεn

). This sequence is bounded
in L2(Ω). In fact, due to our assumptions, (ŷ, û) = (0, 0) ∈ H1

0 (Ω)×L2(Ω) is feasible
for (Pεn

) for all n ∈ N (and for (P0) as well). Hence, we have

α

2
‖un‖

2
L2 ≤ J(un, yn) ≤

1

2
‖yd‖

2
L2 ∀n ∈ N,

where yn denotes the state pertinent to un. Thus, there exists a subsequence {unk
} of

{un} converging weakly in L2(Ω) to ū ∈ L2(Ω). By a standard argument, we assume
without loss of generality that un ⇀ ū.

Lemma 5.1. The weak limit ū of {un} is feasible for (P0), i.e., it satisfies ya ≤
S0(ū) ≤ yb a.e. in Ω.

Proof. First, standard arguments yield

S0(un) → S0(ū) strongly in L2(Ω) as n → ∞.

Since ‖un‖L2 is uniformly bounded, we infer εn‖un‖L2 → 0 for n → ∞. Hence, there
exists a subsequence, which we denote–without loss of generality–again by εnun, such
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that εnun → 0 a.e. in Ω. Since un solves (Pεn
), we have

ya ≤ εnun + S0(un) ≤ yb a.e. in Ω ∀n ∈ N.

From this we obtain

ya ≤ S0(ū) ≤ yb a.e. in Ω.

This implies the feasibility of (ū, ȳ), with ȳ = G0(ū) ∈ H1
0 (Ω) ∩ C(Ω̄), for (P0).

Next we show that un converges strongly to ū, which turns out to be a global
solution of the optimal control problem with pure state constraints.

Theorem 5.1. The sequence {un} converges strongly in L2(Ω) to ū, and ū is a
global solution of the unregularized state constrained problem (P0).

Proof. Since C0(Ω̄) is dense in L2(Ω), there exists a sequence {ut}0<t<1 in C0(Ω̄)
such that

(5.2) ‖ut − u∗‖L2 ≤ t ∀ 0 < t < 1.

Hence {ut} converges strongly in L2(Ω) to u∗ as t → 0. Further, by the analogue of
Lemma 3.1 there exists a real number c1 > 0 such that

(5.3) ‖G′
0(u

∗)(ut − u∗)‖C(Ω̄) ≤ c1‖ut − u∗‖L2 ≤ c1t ∀ 0 < t < 1.

Let us now define an auxiliary sequence {u0
t}0<t<1 in L∞(Ω) by

(5.4) u0
t := ut +

3c1

δ
tu0, 0 < t < 1,

where u0 ∈ L∞(Ω) is the interior Slater point according to Definition 5.1. Due to
(5.2), (5.4) implies

(5.5) ‖u0
t − u∗‖L2 ≤ ‖ut − u∗‖L2 +

3c1

δ
t‖u0‖L∞ ≤ t

(
1 +

3c1

δ
‖u0‖L∞

)

and, hence,

lim
t→0

‖u0
t − u∗‖L2 = 0.

In the following we use c2 := 3c1δ
−1. Our next goal is to show that for every t ∈ (0, t̄],

with t̄ = min{1, c−1
2 }, there exists nt ∈ N such that u0

t is feasible for (Pεn
) for all

n ≥ nt. For this purpose consider for 0 < t ≤ t̄

εnu0
t + G0(u

0
t ) = εnu0

t + G0(u
∗) + G′

0(u
∗)(ut + c2 t u0 − u∗) + OC(Ω̄)(‖u

0
t − u∗‖L2)

= εnu0
t + c2 t(G0(u

∗) + G′
0(u

∗)u0) + (1 − c2 t)G0(u
∗) + G′

0(u
∗)(ut − u∗)

+ OC(Ω̄)(‖u
0
t − u∗‖L2)

≤ c2 t(yb − δ) + (1 − c2 t)yb + εn‖u
0
t‖L∞ + c1t + OC(Ω̄)(t)

= yb − 2c1t + εn‖u
0
t‖L∞ + OC(Ω̄)(t) =: κ(t; εn)

as t → 0, where we used c2 δ = 3c1, the feasibility of u∗ and the linearized Slater
condition. If necessary, we reduce t̄ > 0 such that OC(Ω̄)(t) ≤ c1t for all 0 < t ≤ t̄.
Then we obtain

κ(t; εn) ≤ yb − c1t + εn‖u
0
t‖L∞ ∀ 0 < t ≤ t̄.
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Since εn → 0 for n → ∞, there exists nt ∈ N such that

κ(t; εn) ≤ yb ∀ n ≥ nt.

This implies

εnu0
t + G0(u

0
t ) ≤ yb ∀ n ≥ nt.

From an analogous argument we infer εnu0
t + G0(u

0
t ) ≥ ya for all sufficiently large n.

In conclusion we have shown that there exists t̄ > 0 such that for all 0 < t ≤ t̄ there
exists nt ∈ N such that

ya ≤ εnu0
t + G0(u

0
t ) ≤ yb ∀ n ≥ nt.

Since un is optimal for (Pεn
), we have

J(un, yn) ≤ J(u0
t , y

0
t ) ∀ n ≥ nt,

where yn = G0(un) and y0
t = G0(u

0
t ). Then, due to the weak lower semicontinuity of

J , we find

(5.6) J(ū, ȳ) ≤ lim inf
n→∞

J(un, yn) ≤ lim sup
n→∞

J(un, yn) ≤ J(u0
t , y

0
t ).

From this we obtain for t → 0

(5.7) J(ū, ȳ) ≤ lim
t→0

J(u0
t , y

0
t ) = J(u∗, y∗) ≤ J(ū, ȳ),

where y∗ = G0(u
∗). Hence, (5.6) yields

(5.8) J(ū, ȳ) ≤ lim inf
n→∞

J(un, yn) ≤ lim sup
n→∞

J(un, yn) = J(ū, ȳ) = J(u∗, y∗)

and, thus, the optimality of (ū, ȳ) for (P0). The strong convergence (in L2) of un to
ū now follows from

lim
n→∞

‖S0(un) − yd‖
2
L2 = ‖S0(ū) − yd‖

2
L2 and lim

n→∞
‖un‖

2
L2 = ‖ū‖2

L2 ,

which is due to (5.8), and the fact that weak convergence and convergence in norm
imply the strong convergence of {un} to ū in L2(Ω).

6. Numerical experiments. Our goal in this section is threefold: (i) We ver-
ify our theoretical fast convergence and mesh-independence results numerically. (ii)
Based on the nested iteration concept well known from multigrid methods, we in-
vestigate an acceleration technique for our algorithm. (iii) In the case where one is
interested in solving the state constrained problem

(P0)





minimize J(u, y) := 1
2‖y − yd‖

2
L2 + α

2 ‖u‖
2
L2

over (u, y) ∈ L2(Ω) × H1
0 (Ω) ∩ C(Ω̄)

subject to Ay + d(·, y) = u in Ω,

ya ≤ y(x) ≤ yb f.a.a. x ∈ Ω,

based on the convergence result of Theorem 5.1 an efficient continuation procedure
with respect to the Lavrentiev-parameter ε will be introduced.

For all computations reported on below we used Ω = (0, 1)2 which was triangu-
lated with a regular mesh of mesh-size h (Friedrichs-Keller triangulation). Further,
in all test cases we chose A = −∆.
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6.1. Mesh-independence. For the numerical validation of Theorem 4.1 we ini-
tialize the algorithm with v0

h = 0, y0
h ≡ yb. The iterations are stopped as soon as

‖vk+1
h − vk

h‖L2 ≤ 10−8 holds true. Moreover, the reference optimal solution on a grid
of mesh-size h is approximated by vh, the solution obtained by our algorithm with
a stopping tolerance of 10−14. In the subsequent tables, for every k the quantity
resk

h = ‖vk
h − vh‖L2 represents the distance of the current iterate to the reference

optimal solution. Further, for monitoring locally superlinear convergence we use

θk
h =

‖vk
h − vh‖L2

‖vk−1
h − vh‖L2

.

We consider the following test problem.
Example 1. The nonlinear function d is defined as

d(x, y(x)) = y(x)3 + exp(10y(x)) + y(x),

and the desired state is given by

yd(x) =
cos(πx1) cos(πx2) exp(x1)

2
.

The cost parameter is α = 10−4, and the bounds are ya = −10−2, yb = 0. The
Lavrentiev-parameter is ε = 10−3.

Table 6.1 displays the required number of iterations for various mesh-sizes h. We
clearly observe the mesh-independent behavior of our Algorithm 3.2. The fact that
the algorithm always needs 6 iterations, regardless of the mesh-size of discretization,
is known as strong mesh independence; see [2] for Newton’s method in the case of
smooth operator equations.

Table 6.1
Example 1. Number of iterations for various mesh-sizes h.

h 1
8

1
16

1
32

1
64

1
128

1
256

#It. 6 6 6 6 6 6

Table 6.2
Example 1. Stabilizing effect of resk

h
= ‖vk

h
− vh‖L2 for decreasing mesh-sizes h (rows).

k resk
1/8 resk

1/16 resk
1/32 resk

1/64 resk
1/128 resk

1/256

1 2.8413e-02 8.7660e-02 1.5073e-01 1.8255e-01 1.9271e-01 1.9543e-01
2 1.4956e-03 1.5224e-03 1.3222e-03 1.3423e-03 1.4368e-03 1.4891e-03
3 2.4336e-04 5.1859e-04 3.8196e-04 2.1770e-04 1.9034e-04 1.9798e-04
4 2.9861e-05 2.1424e-04 1.1693e-04 2.7537e-05 2.2058e-05 2.5520e-05
5 2.5470e-06 6.4071e-05 5.0923e-06 1.6677e-06 8.9492e-07 1.2724e-06
6 4.6975e-13 1.7286e-09 8.5543e-12 7.1109e-13 8.5501e-10 1.3787e-08

In the Tables 6.2 and 6.3 we provide a detailed insight into the convergence
behavior of Algorithm 3.2. Each row in Table 6.2 presents the changes of the residuals
resk

h along the iteration sequence with respect to decreasing h. Following the rows,
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one detects a stabilizing effect as the mesh is refined. This fact reflects the asymptotic
mesh-independence of the algorithm.

Finally, the mesh-independent locally superlinear convergence is shown in Ta-
ble 6.3. For fixed h, it is known from finite dimensional approaches [14] that the
method converges locally at a superlinear rate. This can be seen by following the
columns in Table 6.3. The rows, however, indicate the stable behavior with respect
to decreasing h. This effect is not contained in our theoretical result Theorem 4.1.
Here, it numerically augments our theoretical findings.

Table 6.3
Example 1. Stable fast local convergence of Algorithm 3.2.

k θk
1/8 θk

1/16 θk
1/32 θk

1/64 θk
1/128 θk

1/256

2 5.2638e-02 1.7368e-02 8.7717e-03 7.3530e-03 7.4557e-03 7.6194e-03
3 1.6271e-01 3.4063e-01 2.8889e-01 1.6218e-01 1.3248e-01 1.3295e-01
4 1.2270e-01 4.1312e-01 3.0613e-01 1.2649e-01 1.1588e-01 1.2890e-01
5 8.5296e-02 2.9907e-01 4.3551e-02 6.0561e-02 4.0572e-02 4.9859e-02
6 1.8443e-07 2.6979e-05 1.6798e-06 4.2639e-07 9.5541e-04 1.0835e-02

In Figure 6.1 we display the discrete optimal state yh and the corresponding
transformed control vh, respectively, in the upper row. The lower row contains the
adjoint state ph and the optimal control uh. The mesh-size is h = 1/256.

Next we study the behavior of Algorithm 3.2 for ε = 10−3.5 (instead of ε = 10−3

in the previous case). The number of iterations until successful termination is given
in Table 6.4. As before, one can clearly observe the mesh-independent convergence of

Table 6.4
Example 1 with ε = 10−3.5. Number of iterations for various mesh-sizes h.

h 1
16

1
32

1
64

1
128

1
256

#It. 9 12 11 11 10

our algorithm. The behavior of the residuals resk
h for various mesh-sizes h is shown

in the left plot of Figure 6.2 (semi-logarithmic scale on vertical axis). The results
indicate a stabilizing effect as h is refined which reflects the mesh-independence of
our method.

Table 6.5 contains the results for ε = 10−4 analogous to the ones in Table 6.4.
Again, we can observe the mesh-independence of the method. However, in contrast to
the previous test runs the number of iterations is subject to some fluctuations. This
effect can be explained by the increasing ill-conditioning for decreasing ε and the
occurrence of the factor α/2ε2 in the objective function of the transformed problem
(P̃ v) which also adversely affects the conditioning of the problem for small ε. The
corresponding residuals resk

h are depicted in the right plot of Figure 6.2.

Table 6.5
Example 1 with ε = 10−4. Number of iterations for various mesh-sizes h.

h 1
16

1
32

1
64

1
128

1
256

#It. 9 16 23 21 19
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Fig. 6.1. Example 1. Discrete solution for h = 1/256: Optimal state (upper left), optimal
transformed control vh (upper right), adjoint state (lower left) and optimal control uh (lower right).

6.2. Nested iteration. Next we briefly report on the speed-up of Algorithm 3.2
obtained by a coarse-to-fine grid sweep. By solving the problem on a coarse grid and
using the prolongated solution as the initial guess on the fine grid, one expects to stay
within or at least very close to the basin of fast local convergence of our semismooth
Newton method. On the coarsest grid we initialize by setting v0

h = 0 and y0
h ≡ yb.

For the prolongation of the coarse grid solution yH to the refined mesh with mesh-size
h < H we utilize the nine-point-prolongation scheme; see [15] for details. This yields
the initial state y0

h on the refined mesh. From y0
h we then find v0

h by inserting y0
h in

the state equation. In Table 6.6 we report on the result for the following problem.

Example 2. We choose d(y) = y5, α = 10−4.5, ε = 10−4.5, ya = −10−2 and
yb = 0.

The row entitled Prolongation in Table 6.6 shows the results when using Algo-
rithm 3.2 within the nested iteration environment as described above. Below this
row we display the CPU-time required on the respective grid. Under Fixed mesh
we report on the number of iterations needed when the initial point on every grid is
chosen as v0

h = 0 and y0
h ≡ yb (the qualitative behavior remains true for other initial

choices). The next row, again, shows the CPU-time consumed on the respective grid.
From the iteration count as well as from the CPU-time comparison, compared to the
conventional run on a fixed mesh one finds a significant speed-up when combining
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Fig. 6.2. Example 1. Stabilizing behavior of resk

h
for ε = 10−3.5 (left plot) and ε = 10−4 (right

plot) for various mesh-sizes h.

Algorithm 3.2 with a coarse-to-fine mesh sweep.

Table 6.6
Example 2. Speed-up under a coarse-to-fine mesh sweep.

h 1
8

1
16

1
32

1
64

1
128

1
256

Prolongation 7 2 3 14 16 12
CPU-time 6.00e-02 9.00e-02 5.90e-01 1.13e+01 1.20e+02 1.48e+03

Fixed mesh 7 9 17 27 39 34
CPU-time 6.00e-02 2.70e-01 2.31e00 2.13e+01 2.60e+02 3.25e+03

6.3. Extrapolation. We are now concerned with the continuation as the Lavren-
tiev-parameter ε tends to zero. Hence, our goal is to solve the original state con-
strained optimal control problem (P0). Since the regularized problems (Pε) become
increasingly more complicated as ε → 0, we are interested in a stable and efficient
continuation with respect to ε. For this purpose we propose here an extrapolation
technique which, based on a solution of (Pε) for ε = εn, aims at providing a good initial
guess for the subsequent solution of the regularized problem (Pεn+1

) with εn+1 < εn.
We point out that we will only examine linear extrapolation. Higher order techniques
are conceivable.

In the following, assume that yn = y(εn) is the optimal state corresponding to
(Pεn

), and let εn+1 < εn denote the next Lavrentiev-parameter. Without loss of
generality, we assume that εn+1 is given by

εn+1 = (1 − κn)εn with 0 < κn < 1.

Assuming that y(ε) varies smoothly with ε, the solution yn+1 = y(εn+1) is now
approximated by

(6.1) yn+1 ≈ yn +
κn

κn−1
(1 − κn−1)(yn − yn−1).

Notice that (6.1) is obtained from the assumption that y(·) is smooth enough, the re-
mainder term in a Taylor expansion of y about εn is small, and ẏ(εn), the (directional)
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derivative of y with respect to ε evaluated at εn, is approximated by the difference
quotient

ẏ(εn) ≈
y(εn+1) − y(εn)

εn+1 − εn
.

We point out that the rigorous investigation of the regularity of y(ε) as a function of
ε goes beyond the scope of the present work. It is the subject of ongoing research.

The findings reported on below are based on the following test problem.
Example 3. We choose the nonlinearity d(y) = y3, the bounds ya = −2.2, yb =

4.5, the cost of the control α = 10−2, and the desired state yd = sin(2πx1x2) exp(7x1).
The test runs are initialized with the feasible pair (u0

h, y0
h) = (0, 0). In Table 6.7

we provide the results for various Lavrentiev-parameter choices and for various mesh-
sizes h. As expected, the smaller ε becomes, the more challenging the solution of the
respective problem becomes. This effect is more pronounced on fine meshes.

Table 6.7
Example 3. Number of iterations for several Lavrentiev-parameter choices and mesh-sizes h.

# It. for various h
ε 1/16 1/32 1/64 1/128

10−1 8 8 8 8
10−2 8 8 8 8
10−3 12 15 15 15
10−4 16 26 35 45
10−5 17 31 58 89
10−6 17 32 66 129
10−8 17 30 68 130

In Figure 6.3 we depict the discrete optimal state yh and the corresponding opti-
mal control uh for h = 1/128. We recall that as long as ε > 0 the results in [29] guar-
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Fig. 6.3. Example 3. Optimal state (left plot) and corresponding control uh (right plot) for
h = 1/128.

antee that the Lagrange multiplier associate with the pointwise inequality constraints
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in (Pε) is a function in L2(Ω). For our test problem and due to our construction, as
ε → 0 the Lagrange multipliers for the upper and lower bound, respectively, approach
a Dirac measure concentrated in a single point. This fact is shown in Figures 6.4–6.9
for the Lagrange multiplier associated with the lower bound.
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Fig. 6.4. ε = 10−1.
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Fig. 6.5. ε = 10−2.
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Fig. 6.6. ε = 10−3.
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Fig. 6.7. ε = 10−4.

From the result in Table 6.7 we find that for the initial choice (y0
h, u0

h) the per-
formance of the Algorithm deteriorates for ε ≤ 10−3. Therefore, we employ our
extrapolation technique in this case in order to benefit from improved initial guesses.
We set κn = 1− 10−1.5 and ε0 = 10−2. The solution of (Pε1

) is computed with initial
guess (yε0

, uε0
), the solution of (Pε0

). Table 6.8 displays the number of iterations
required for successful termination of Algorithm 3.2. The results show that the ex-
trapolation technique yields a significant acceleration of the solution process for (Pε)
with small Lavrentiev-parameter.

Finally, we are interested in combining the nested iteration concept with the ex-
trapolation technique. For reasons of comparison, in Table 6.9 we provide the iteration
numbers when solving Example 3 by solely using the nested iteration technique. Upon
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Fig. 6.9. ε = 10−9.

Table 6.8
Example 3. Number of iterations for the extrapolation technique.

# It. for various h
ε 1

16
1
32

1
64

1
128

10−2 8 8 8 8
10−3.5 5 6 8 9
10−5 2 3 5 8
10−6.5 2 3 6 9
10−8 1 3 6 10

comparing the results in Table 6.7 with the ones in Table 6.9, as for the test cases in
section 6.2 we find that the nested iteration approach yields a significant speed-up of
Algorithm 3.2. As noticed earlier, the regularized problems are the harder to solve the
smaller ε becomes. Further, the effect is more pronounced on fine grids. Hence, it is
of interest to combine the nested iteration with our extrapolation concept in order to
benefit from both acceleration techniques. For this purpose, we invoke the following
procedure: We start with ε0 = 10−2 on our coarsest grid (h = 1/8) and solve the regu-
larized problem. Then we prolongate this solution to the next finer mesh (h = 1/16),
reduce ε to ε1 = 10−3.5 and solve (Pε1

). We extrapolate the solution for ε1 and
prolongate the result to the next finer mesh level (h = 1/32) where it serves as the
initial guess for our algorithm when solving (Pε2

) with ε2 = 10−5. The extrapolation
and prolongation for obtaining initial guesses is repeated until the desired mesh size
and Lavrentiev-parameter ε are reached. In Table 6.10 we provide the corresponding
results. The design of the table emphasizes the diagonalization process by simultane-
ously tuning h and ε. Again, compared to the results in Table 6.7 we clearly detect a
strong acceleration of Algorithm 3.2 by employing our combined nested iteration and
extrapolation technique. Further, we can see that the pure nested iteration and the
combined strategy require about the same number of iterations. With respect to the
numerical stability of the computations, in our tests we find that the combined concept
is advantageous over the pure nested iteration. This is due to the ill-conditioning of
the problems because of small regularization parameters for the pure nested iteration
concept.
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Table 6.9
Example 3. Nested iteration technique for various Lavrentiev-parameters ε.

ε h
1
4

1
8

1
16

1
32

1
64

1
128

10−2 7 4 4 3 3 2
10−3.5 7 5 4 4 5 4
10−5 8 4 4 3 5 5
10−6.5 8 4 4 3 6 5
10−8 8 4 4 3 6 5

Table 6.10
Example 3. Combined extrapolation and nested iteration approach.

ε h
1
8

1
16

1
32

1
64

1
128

10−2 7 - - - -

10−3.5 - 5 - - -

10−5 - - 3 - -

10−6.5 - - - 6 -

10−8 - - - - 5
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[24] C. Meyer and F. Tröltzsch. On an elliptic optimal control problem with pointwise mixed control-
state constraints. Lectures Notes in Economics and Mathematical Systems, 563:187–204,
2006.
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