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hAbstra
t A primal-dual interior point method for state-
onstrained paraboli
optimal 
ontrol problems is 
onsidered. By a Lavrentiev type regularization, thestate 
onstraints are transformed to mixed 
ontrol-state 
onstraints whi
h, after asimple transformation, 
an be handled as 
ontrol 
onstraints. Existen
e and 
on-vergen
e of the 
entral path are shown. Moreover, the 
onvergen
e of a short stepinterior point algorithm is proven in a fun
tion spa
e setting. The theoreti
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on�rmed by numeri
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onstraints, Lavrentievtype regularization, interior point method.
AMS-Subj
lass 49M15, 49M371. Introdu
tionIn this paper, we extend our investigations on interior point methods for ellipti
state-
onstrained optimal 
ontrol problems in [18℄ and [13℄ to the paraboli
 
ase.The main di�
ulty of the numeri
al analysis of interior point methods for su
hproblems is the la
k of regularity of Lagrange multipliers asso
iated with the state
onstraints. Therefore, it is helpful to improve the properties of the multipliers bysuitable regularization te
hniques.For instan
e, this task 
an be a

omplished by dis
retization and subsequentappli
ation of interior point methods. We mention the work by Bergounioux et al.[1℄, who 
arefully 
ompare the performan
e of primal-dual a
tive set strategies andinterior point methods for ellipti
 problems, Grund and Rös
h [5℄, who solve su
hproblems with maximum norm fun
tional, and Maurer and Mittelmann [16℄, whohandle several state-
onstrained ellipti
 
ontrol problems by standard interior point
odes.To 
onsider the interior point algorithm in fun
tion spa
e, we suggested in [18℄,[13℄ a Lavrentiev type regularization. The Lavrentiev regularization of ellipti
 prob-lems was introdu
ed in [14℄. This method ensures regular Lagrange multipliersand preserves, in some sense, the stru
ture of a state-
onstrained 
ontrol prob-lem. Moreover, 
ompared with a dire
t appli
ation of interior point methods tostate-
onstrained problems, the regularization improves the performan
e of the al-gorithm, [13℄.In [26, 27℄, primal-dual interior point methods are analyzed for ODE problemsin an in�nite dimensional fun
tion spa
e setting, and their 
omputational realiza-tion by inexa
t pathfollowing methods has been suggested. In [18℄, this methodis extended to the optimal 
ontrol of linear ellipti
 PDEs with regularized point-wise state 
onstraints, where the analysis is performed in L∞-spa
es. Nonlinearequations are 
onsidered in the re
ent paper [24℄. In parti
ular, the 
onvergen
e1



2of primal-dual interior point methods is shown in Lp-spa
es with p < ∞ for the
ontrol-
onstrained 
ase.Today, there exist also several papers on the numeri
al analysis of interior pointmethods for paraboli
 optimal 
ontrol problems. For instan
e, trust-region interiorpoint te
hniques were 
onsidered by M. Ulbri
h, S. Ulbri
h, and Heinkens
hloss[25℄ for the optimal 
ontrol of semilinear paraboli
 equations in a fun
tion spa
esetting. A�ne-s
aling interior-point methods are presented for semilinear paraboli
boundary 
ontrol in [23℄. Sa
hs and Leibfritz [10, 9, 8℄ 
onsidered interior pointmethods in the 
ontext of SQP-methods for paraboli
 optimization problems.In our paper, we are able to prove the 
onvergen
e of a 
on
eptual primal interiorpoint method in fun
tion spa
e. We 
on�ne ourselves to a problem with linearequation and an obje
tive fun
tional with observation at the �nal time. This seemsto be more 
hallenging in the analysis than fun
tionals of tra
king type.The analysis is very similar to the one for the ellipti
 
ase that was dis
ussedin [18℄. Therefore, we 
on
entrate on those parts of the proofs that need essentialmodi�
ations for paraboli
 problems. For parts of the theory that are 
ompletelyanalogous to ellipti
 problems, we refer to [18℄.In the paraboli
 
ase, the presen
e of pointwise state 
onstraints 
auses strongerrestri
tions on the dimension of the spatial domain than for ellipti
 equations. Wedo not impose 
ontrol 
onstraints. Therefore, the natural 
ontrol spa
e is of type L2.To derive �rst-order ne
essary optimality 
onditions of Karush-Kuhn-Tu
ker type,the state fun
tions should be 
ontinuous. This restri
ts the theory to distributedproblems in one-dimensional domains.This obsta
le is 
ompletely over
ome by our Lavrentiev regularization, whi
h is
ru
ial for the analysis. After regularization, we obtain Lagrange multipliers forany dimension of the domain. Moreover, we do not need 
onstraint-quali�
ations.This remarkable advantage of our regularization method is worth mentioning.The paper is organized as follows: After de�ning our problem and introdu
ingour main assumptions in Se
tion 2, Se
tion 3 is devoted to known results 
on
erningthe paraboli
 equation. In parti
ular, we regard the properties of the 
ontrol-to-state mapping.In Se
tion 4, we introdu
e the Lavrentiev type regularization. We motivatewhy the Lagrange multipliers are regular and show that the optimal 
ontrol of theregularized problem 
onverges towards the optimal 
ontrol of the original problem.Se
tion 5 is devoted to existen
e and 
onvergen
e of the 
entral path de�ned by theinterior point method. In Se
tion 6, we dis
uss the 
onvergen
e of a simple interiorpoint algorithm in fun
tion spa
e and �nally, in Se
tion 7, we 
on�rm our theoryby some numeri
al examples. 2. Problem settingWe 
onsider the optimal 
ontrol problem(1) min J(y, u) =
1

2
‖y(T ) − yd‖2

Ω +
κ

2
‖u‖2

Qsubje
t to the paraboli
 initial boundary value problem(2) yt −∇ · (A∇y) + c0y = u in Q,
∂ny + αy = 0 in Σ,

y(0) = 0 in Ω,



3and to the pointwise state 
onstraints(3) ya(x, t) ≤ y(x, t) ≤ yb(x, t) for all (x, t) ∈ Q.In this setting, Ω ⊂ R
N , N ≥ 1, is a bounded domain with C1,1-boundary Γ,and (0, T ) is a �xed time interval. We de�ne Q := Ω × (0, T ) and Σ := Γ × (0, T ).

A = (aij(x)), i, j = 1, ..., N , is a symmetri
 matrix with aij ∈ C1,γ(Ω), γ ∈ (0, 1).It is assumed to satisfy the following 
ondition of uniform ellipti
ity: There isan m > 0 su
h that
λ⊤A(x)λ ≥ m|λ|2 for all λ ∈ R

N and all x ∈ Ω̄.Moreover, fun
tions c0 ∈ L∞(Q), yd ∈ L∞(Ω), and ya, yb from C(Q̄) are given thatsatisfy ya(x, t) < yb(x, t) for all (x, t) ∈ Q̄.By the 
ontinuity of ya and yb, there is some cQ > 0, su
h that it holds(4) yb(x, t) − ya(x, t) ≥ cQ ∀(x, t) ∈ C̄.Notations: By ‖ · ‖Lp(M), M ∈ {Q, Σ, Ω}, we denote the standard norm of Lp(M).By (·, ·)L2(M) the inner produ
t of L2(M) is denoted. In L2(Q), the norm and theinner produ
t are written without subs
ript, i.e. ‖ · ‖ := ‖ · ‖L2(Q) and (·, ·) =

(·, ·)L2(Q) is the asso
iated inner produ
t of L2(Q). We use ‖B‖V →W for the normof a linear 
ontinuous operator B : V → W . If V = W = L2(Q) we just write ‖B‖.Throughout the paper, c is a generi
 positive 
onstant. To shorten the notation,we write e.g. B + µ
w−ya

instead of B + µ
w−ya

I, although B is an operator and µ
w−yais a fun
tion. By ∂n we denote the 
onormal derivative with respe
t to A, where nis the outward normal dire
tion on Γ.3. Some fa
ts about the paraboli
 equationIn this se
tion, we re
all some known fa
ts about the paraboli
 equation de�nedin (2). For the proof, we refer to [2℄ and [7℄, or to the survey in [22℄.By W (0, T ), we denote the Hilbert spa
e of fun
tions y ∈ L2(0, T ; V ) with timederivative y′ in L2(0, T ; V ∗), endowed with its standard norm, 
f. [11℄. For thenotion of a weak solution to (2) we refer to [7℄ or [11℄.Theorem 3.1. The 
ontrol-to-state mapping u 7→ y asso
iated with equation (2)is linear and 
ontinuous from L2(Q) to W (0, T ).With the linearity of the paraboli
 pde, we 
an write y = GQu, where the
ontrol-to-state mapping GQ : L2(Q) → W (0, T ) is 
ontinuous in view of Theorem3.1.The mapping u 7→ y(T ), 
onsidered from L2(Q) to L2(Ω), the �observation� of

y at T , is denoted by S. De�ne ET : W (0, T ) → L2(Ω) by ET : y 7→ y(T ). Then Sis given by S = ET GQ.If we 
onsider GQ with range in L2(Q), then we denote this operator by G, i.e.
G = EGQ, where E is the embedding operator from W (0, T ) to L2(Q).Corollary 3.2. The mapping S : u 7→ y(T ) is 
ontinuous from L2(Q) to L2(Ω).Summarizing up, we have introdu
ed the mappings

GQ : L2(Q) → W (0, T ),

G : L2(Q) → L2(Q),

S : L2(Q) → L2(Ω).



4Remark 3.3. Although we have �xed the spa
es of L2-type, where G and S arede�ned, we shall 
onsider them also in other spa
es without 
hanging their notation,as in the next theorem.Theorem 3.4. Let Ω ⊂ R
N be a bounded C1,1-domain and assume f ∈ Lr(Q) with

r > N/2 + 1, g ∈ Ls(Σ) for s > N + 1 and y0 ∈ C(Ω̄). Then the weak solution y of
yt −∇(A∇y) + c0y = f in Q,

∂ny + αy = g on Σ,
y(0) = y0 in Ωbelongs to C(Q̄) and there is a 
onstant c independent of u, su
h that

‖y‖C(Q̄) ≤ c
(

‖f‖Lr(Q) + ‖g‖Ls(Σ) + ‖y0‖C(Ω̄)

)

.Proof. We refer to [2℄, or [19℄, 
f. also [22℄, Lemma 7.10. �For a spatial dimension of N = 2, we need r > 2 and for N = 3 we need r > 5/2to satisfy the assumptions.Remark 3.5. We present the theory for homogeneous boundary data and zeroinitial value. Problems with �xed inhomogeneous data in the paraboli
 equation,(5) yt −∇ · (A∇y) + c0y = u + f in Q,
∂ny + αy = g in Σ,

y(0) = y0 in Ω,where f ∈ Lr(Q), r > N/2 + 1, g ∈ Ls(Σ), s > N + 1, and y0 ∈ C(Ω̄) are given,
an be easily transformed to a problem of type (1)�(3). One has to separate the�xed part of y asso
iated with (f, g, y0) and to subtra
t this part from yd.4. Mixed 
ontrol-state 
onstraintsIn this se
tion, we 
onsider the regularized optimal 
ontrol problem(P) min J(y, u) =
1

2
‖y(T ) − yd‖2

Ω +
κ

2
‖u‖2

Qsubje
t to
yt −∇ · (A∇y) + c0 = u in Q,

∂ny + αy = 0 on Σ,
y(0) = 0 in Ω,

(6)and to the mixed (ε-regularized) 
ontrol-state 
onstraints(7) ya ≤ y + εu ≤ yb a.e. in Q.We are able to show that the optimal 
ontrol uε of this problem tends in L2(Q)to the solution ū of the original problem, provided that a Slater type 
onditionis satis�ed for the original one. The method of proof is analogous to the one inHintermüller et al. [6℄. We do not prove this result, sin
e we aim at 
on
entratingon the interior point method for problem (P) rather than to dis
uss the relation tothe unregularized problem (1)�(3). Following [14℄, we transform the mixed 
ontrol-state 
onstraints into 
ontrol 
onstraints. By the operator G, introdu
ed in Se
tion3, we 
an write
y + εu = Gu + εu = (G + ε I)u.



5The fun
tion w := y + εu is 
onsidered as a new auxiliary 
ontrol. Then we have
u = D w, where D : L2(Q) → L2(Q) is de�ned by

D = (G + ε I)−1.(8)
D is well de�ned, as the next result shows:Lemma 4.1. For all ε 6= 0, the operator D exists and is 
ontinuous in L2(Q).Proof. First we show that the kernel of G + εI is trivial. To see this, 
onsider theequation

Gu + εu = 0.This is equivalent to u = G(−ε−1u). By the de�nition of G, u solves the system
ut − ∆u + c0u = −1

εu in Q,
∂nu + αu = 0 on Σ,

u(0) = 0 in Ω.By taking (−1/ε)u to the other side of the equation we see that u solves a homo-geneous initial-boundary value problem that has only the trivial solution.It remains to show that εI + G is surje
tive. Then the Bana
h theorem on theinverse operator ensures the 
ontinuity of D = (εI +G)−1. Let w ∈ L2(Q) be givenarbitrarily and 
onsider the equation
εu + Gu = w.To solve it, we 
onsider the equation

yt − ∆y + c0y = 1
ε (w − y) in Q,

∂ny + αy = 0 on Σ,
y(0) = 0 in Ω.

(9)Taking −1
εy to the other side, we see that this equation has a unique solution

y ∈ W (0, T ). Now we de�ne(10) u :=
1

ε
(w − y).Then y = Gu holds and hen
e

u =
1

ε
(w − Gu).Obviously, this u solves the equation εu + Gu = w and we have shown the surje
-tivity. �4.1. Regular Lagrange multipliers. By the te
hnique used in [13℄ for an ellipti
problem, we will motivate the existen
e of regular multipliers. We do not dire
tlyneed this result for our 
onvergen
e analysis. However, it shows how the regu-larization helps to 
onstru
t a problem with better properties. In parti
ular, thisexplains why our numeri
al method does not have to deal with measures as multi-pliers. First of all, we transform problem (P) with mixed 
ontrol-state 
onstraints(7) in a 
ontrol-
onstrained problem with new 
ontrol w := D−1u. With S and D,we transform problem (P) to one depending on the 
ontrol w as(11) min F (w) =

1

2
‖SDw − yd‖2

L2(Ω) +
κ

2
‖Dw‖2subje
t to(12) ya ≤ w ≤ yb a.e. in Q.



6 This transformation of our 
ontrol problem (P) will be used for the analysis ofthe interior point algorithm, while all 
omputations are performed with the originalform of (P).The fun
tional F is 
ontinuously Fré
het-di�erentiable on L2(Q). Its Fré
hetderivative is represented by
F ′(w)v = ((SD)∗(SDw − yd), v) + κ (D∗Dw, v) .We 
an identify it with the fun
tion

g := (SD)∗(SDw − yd) + κD∗Dw ∈ L2(Q),the Riesz representation of the derivative. Using the same arguments as in [13, 14℄,we de�ne Lagrange multipliers ηa and ηb ∈ L2(Q) by
ηa(x, t) = g(x, t)+,

ηb(x, t) = g(x, t)−,so that g = g+ − g− = ηa − ηb.Remark 4.2. In all what follows, a bar as in ū, ȳ, or w̄ et
. indi
ates optimality.The optimal solution w̄ ful�lls, together with ηa and ηb, the following ne
essaryand (by 
onvexity) su�
ient optimality 
onditions:
S∗(SDw̄ − yd) + κDw̄ + (D∗)−1(ηb − ηa) = 0,(13)together with the 
omplementary 
onditions

(14) (ηa, w̄ − ya) = 0 , (ηb, yb − w̄) = 0

ηa(x, t) ≥ 0 , ηb(x, t) ≥ 0 a.e. in Q

w̄(x, t) − ya(x, t) ≥ 0 , yb(x, t) − w̄(x, t) ≥ 0 a.e. in Q.Following the same steps as in [15℄, ηa, ηb are veri�ed to be the Lagrange multipliersasso
iated with the mixed 
onstraints (7).4.2. Transformation in terms of PDEs. By D−1 = εI + G we 
an write (13)in the form
S∗(SDw̄ − yd) + κDw̄ + ε(ηb − ηa) + G∗(ηb − ηa) = 0.(15)Re-substituting Dw̄ = ū, and de�ning an adjoint state p by

p = G∗(ηb − ηa) + S∗(Sū − yd),(16)we obtain the optimality 
onditions̄
y = Gū,(17)

p + κū = ε(ηa − ηb),(18)together with the 
omplementarity 
onditions (14), where we resubstitute w̄ :=
εū + ȳ.The adjoint state p de�ned by (16) is the unique solution of the following adjointequation:

−pt −∇ · (A∇p) + c0p = ηb − ηa in Q,

∂np + αp = 0 on Σ,(19)
p(T ) = ȳ(T ) − yd in Ω.



7The adjoint equation has a unique solution p ∈ W (0, T ). It holds
‖p‖W (0,T ) ≤ cw

(

‖ηb − ηa‖L2(Q) + ‖ȳ(T ) − yd‖L2(Ω)

)with some cw not depending on the given data. This follows from Theorem 3.1after the transformation of time τ := T − t.Remark 4.3. The 
ase ε = 0 is formally 
overed by the optimality system (14)�(18), too. Here, possibly, ηa, ηb belong to M(Q̄), the spa
e of regular Borel mea-sures de�ned at Q̄. Then equation (19) is a paraboli
 PDE with measures on therighthand-side, whi
h may even appear in the boundary and terminal 
onditions,we refer to Casas [2℄. In this 
ase, our theory does not work, sin
e the operator Dis unbounded and not de�ned on the whole spa
e L2(Q).In summary, we have derived the following theorem:Theorem 4.4. For all ε 6= 0, problem (P) has a unique optimal 
ontrol ūε withasso
iated state ȳε. There exist non-negative Lagrange multipliers ηa ∈ L2(Q) and
ηb ∈ L2(Q) and an asso
iated adjoint state p ∈ W (0, T ), su
h that the optimalitysystem (14)�(18) is satis�ed.The existen
e of the optimal 
ontrol follows in parti
ular from the fa
t that theequation εu + Gu = ya is solvable for all nonzero ε. Therefore, the admissible setis never empty. Due to the 
onvexity of the obje
tive fun
tional F , the ne
essaryoptimality 
onditions are also su�
ient for optimality.5. Interior-point method in fun
tion spa
eBy the interior point method, the 
onstrained problem (11)�(12) is transformedinto a formally un
onstrained problem by adding a logarithmi
 barrier term to theobje
tive fun
tional F . In this se
tion, we show that the transformed problems aresolvable and that the asso
iated 
entral path exists.In terms of PDE, the problem (P) is 
onverted to the following one:
min Jµ(y, u) :=

1

2
‖y(T ) − yd‖2

Ω +
κ

2
‖u‖2

Q − µ

∫∫

Q

ln (y + εu − ya) + ln (yb − εu − y) dxdt

subje
t to the equation (2).Let us �rst state the asso
iated ne
essary optimality 
onditions. In a standardway, e.g. by the formal Lagrange-te
hnique explained in [22℄, we obtain the adjointequation
−pt −∇ · (A∇p) + c0p = − µ

y+εu−ya
+ µ

yb−εu−y in Q,

∂np + αp = 0 on Σ,
p(T ) = y(T ) − yd in Ω,

(20)
and the gradient equation

p + κu − εµ

y + εu − ya
+

εµ

yb − εu − y
= 0 a.e in Q.(21)The solution (uµ, yµ, pµ), if it exists, is expe
ted to 
onverge to the solution ofProblem (P) as µ ↓ 0. We prove the existen
e of this and the optimality 
onditions



8by 
onsidering the penalized version of Problem (11)�(12), i.e.,
min Fµ(w) :=

1

2
‖SDw − yd‖2

Ω +
κ

2
‖Dw‖2

Q − µ

∫∫

Q

ln (w − ya) + ln (yb − w) dx dt,

(Pµ)
where µ > 0 is the path parameter that will tend to zero. This is a formallyun
onstrained problem, but the logarithmi
 barrier term 
an only be �nite for
w ∈ L2(Q) with ya < w < yb a.e. in Q. Therefore, the admissible set of (Pµ) isopen in some sense. Noti
e that Fµ(w) is a 
onvex fun
tional.To prove the existen
e of a solution of problem (Pµ), we apply a method that hasbeen introdu
ed in [18℄. It 
onsiders the minimization of Fµ in a 
losed subset and,at the same time, �nally permits to show that the solution wµ has some positivedistan
e to the bounds: We have ya + τ ≤ wµ ≤ yb − τ for some su�
iently small
τ > 0 that depends on µ.5.1. Existen
e. For �xed τ > 0, we 
onsider the auxiliary problem(Aux) min

ya+τ≤w≤yb−τ
Fµ(w).The admissible set of this problem is 
losed, and the fun
tional Fµ is bounded.We de�ne the following admissible sets:

W := {w ∈ L2(Q) | ya ≤ w ≤ yb a.e. in Q},(22)
Wτ := {w ∈ L2(Q) | ya + τ ≤ w ≤ yb − τ a.e. in Q}.(23)Theorem 5.1. For every 0 < τ < cQ/3, cQ de�ned in (4) and for all µ > 0,problem (Aux) has a unique solution wτ,µ. There is a bound c not depending on τand µ su
h that it holds ‖wτ,µ‖L∞(Q) ≤ c.Proof. It is 
lear that Wτ is non-empty, 
onvex, 
losed and bounded. Fµ is stri
tly
onvex and 
ontinuous on Wτ , and hen
e weakly lower semi
ontinuous. Therefore,standard arguments show the existen
e of a unique solution of (Aux). The uniformboundedness of the solution is an obvious 
onsequen
e of the boundedness of Wτ ⊂

W in L∞(Q). �In the 
ase of one-sided 
onstraints y + εu ≤ yb or ya ≤ y + εu , Theorem 5.1
annot be shown in this way, sin
e the asso
iated set Wτ is not bounded. Here, thefollowing Lemma applies that 
an be proven 
ompletely analogous to Lemma 3.2in [18℄.Lemma 5.2. For all µ ≥ 0, it holds that Fµ(w) → ∞ if ‖w‖ → ∞ and w ≥ ya or
w ≤ yb, respe
tively.The fun
tion Fµ is dire
tionally di�erentiable at wτ,µ in all dire
tions w − wτ,µwith w ∈ Wτ . The optimality of wτ,µ gives

F ′
µ(wτ,µ)(w − wτ,µ) ≥ 0 ∀w ∈ Wτ ,where F

′

µ denotes the dire
tional derivative of Fµ. A

ording to the de�nition of
Fµ, we obtain the variational inequality

(gτ,µ, w − wτ,µ)Q ≥ 0 ∀w ∈ Wτ ,(24)



9where the fun
tion gτ,µ ∈ L2(Q) is de�ned by(25) gτ,µ := (SD)∗(SDwτ,µ − yd) + κD∗Dwτ,µ − µ

wτ,µ − ya
+

µ

yb − wτ,µ
.Next, we de�ne two auxiliary fun
tions, namely

pτ,µ := (SD)∗(SDwτ,µ − yd) and qτ,µ := κD∗Dwτ,µ.We show that they are bounded in L∞(Q), uniformly with respe
t to τ and µ. Tothis aim, we need the following result.Lemma 5.3. The operators D and D∗ are 
ontinuous in L∞(Q).Proof. To �nd u = Dw, we have to solve the equation εu + Gu = w. In view of (9)and (10), this is equivalent to the following two steps: We solve �rst (9) to �nd y.Next, we obtain u by formula (10). Thanks to Theorem 3.4, the mapping w 7→ y islinear and 
ontinuous in L∞(Q). Therefore, the same holds true for the mapping
w 7→ u = ε−1(w − y(w)). This shows the 
ontinuity of D.The proof for D∗ is analogous, sin
e G∗ is related to an adjoint paraboli
 equationthat has the same properties as equation (9). �The following Lemma asserts the L∞-boundedness of p and q.Lemma 5.4. There is a positive 
onstant cp,q su
h that

‖pτ,µ‖L∞(Q) + ‖qτ,µ‖L∞(Q) ≤ cp,qholds true for all 0 < τ < cQ/3 and all µ > 0.Proof. We have
‖pτ,µ‖L∞(Q) + ‖qτ,µ‖L∞(Q) ≤ ‖(SD)∗(SDwτ,µ − yd)‖L∞(Q) + κ‖D∗Dwτ,µ‖L∞(Q).In view of Theorem 3.4 and Lemma 5.3, all operators appearing in this formula are
ontinuous in L∞-spa
es on asso
iated domains. Moreover, we have assumed that
yd ∈ L∞(Ω). Therefore, the result of the Lemma is an immediate 
on
lusion ofTheorem 5.1. �The main result of this se
tion, the existen
e of the 
entral path, 
an be shown
ompletely analogous to the ellipti
 
ase dis
ussed in [18℄. Nevertheless, we brie�ysket
h the proof for 
onvenien
e of the reader. To this aim, we de�ne the sets

M+(τ, µ) := {(x, t) ∈ Q | gτ,µ(x, t) > 0} ,

M−(τ, µ) := {(x, t) ∈ Q | gτ,µ(x, t) < 0} ,

M0(τ, µ) := {(x, t) ∈ Q | gτ,µ(x, t) = 0} .Lemma 5.5. For all µ > 0, there are positive numbers τ+(µ) and τ−(µ) su
h that,for all 0 < τ < τ (µ), the sets M+(τ ) and M−(τ ) have measure zero.Proof. A standard evaluation of (24) yields for almost all (x, t) ∈ Q that
wτ,µ(x, t) =

{

ya(x, t) + τ, (x, t) ∈ M+(τ, µ)
yb(x, t) − τ, (x, t) ∈ M−(τ, µ).Almost everywhere on M+(τ, µ), Lemma 5.4 implies

0 < gτ,µ(x, t) = pτ,µ(x, t) + qτ,µ(x, t) − µ

τ
+

µ

yb(x, t) − ya(x, t) − τ

≤ cp,q −
µ

τ
+ 2

µ

cQ
.(26)



10For τ ↓ 0, the right hand side tends to −∞, a 
ontradi
tion for all su�
ientlysmall τ > 0, say τ < τ+(µ). Consequently, M+(τ, µ) is of measure zero for these τ .Analogously, M−(τ, µ) 
an be handled. De�ne now τ (µ) := min{τ+(µ), τ−(µ)}, wehave found the bound τ (µ), for that the Lemma holds. �Now we 
an formulate the main result of this se
tion.Theorem 5.6. For all µ > 0 and all 0 < τ < τ (µ), the solution wτ,µ of (Aux) isthe unique solution wµ of problem (Pµ).Proof. Sin
e Q = M0(τ )∪M+(τ )∪M
−
(τ ) and the set M+(τ )∪M

−
(τ ) has measurezero for 0 < τ < min{τ+(µ), τ−(µ)}, we have

gτ,µ(x, t) = 0 a.e. in Q.Therefore, it holds that
F

′

µ(wτ,µ)h =

∫∫

Q

gτ,µ(x, t) h(x, t) dxdt = 0 ∀h ∈ L2(Q),

and hen
e wτ,µ satis�es the ne
essary optimality 
ondition for problem (Pµ). By
onvexity, the ne
essary 
onditions are su�
ient for optimality. Strong 
onvexityyields uniqueness (noti
e that κ > 0). In view of this, wτ,µ is the unique solution
wµ of (Pµ). �Corollary 5.7. Let be µ0 > 0 an initial value. Then, for all 0 < µ < µ0, thesolution wµ of (Pµ) satis�es(27) ya(x, t) + τ (µ) ≤ wµ(x, t) ≤ yb(x, t) − τ (µ), a.e. in Q,where τ (µ) = cτµ > 0 and cτ is given by

cτ =
1

cp,q + 2 µ0

cQ

.Proof. By Theorem 5.6, we have wτ,µ = wµ for all 0 < τ < τ (µ). In view of thede�nition of (Aux), wτ,µ satis�es
ya(x, t) + τ (µ) ≤ wµ(x, t) ≤ yb(x, t) − τ (µ)for all τ < τ (µ), i.e., inequality (27) is satis�ed. Let us quantify τ (µ). From (26),we get µ

τ ≤ cp,q + 2 µ
cQ
, hen
e

τ ≥ µ

cp,q + 2 µ
cQ

≥ µ

cp,q + 2 µ0

cQ

= cτµ,(28)where cτ = 1
cp,q+2

µ0
cQ

, what gives us τ ≥ τ (µ) = cτµ. �Remark 5.8. Collorary 5.7 shows that minimizing Jµ generates solutions in theinterior of the feasible set, so that the name "interior point method" is justi�ed.After having solved the problem of existen
e, let us verify and re-formulate theoptimality 
onditions (20)�(21). We denote by uµ the optimal 
ontrol with state
yµ given by εuµ +yµ = wµ. The asso
iated adjoint state is pµ. De�ne ηa,µ and ηb,µby(29) ηa,µ =

µ

yµ + εuµ − ya
, ηb,µ =

µ

yb − εuµ − yµ
.



11Multiplying (25) by (D∗)−1 = (εI + G∗), we obtain in view of Dwµ = uµ and
Suµ = yµ that(30) S∗(yµ(T ) − yd) + κuµ + ε(ηb,µ − ηa,µ) + G∗(ηb,µ − ηa,µ) = 0.This is the 
ounterpart to (15). We set(31) pµ := S∗(yµ(T ) − yd) + G∗(ηbµ − ηa,µ).Then, analogous to (19), pµ, yµ, uµ solve the adjoint equation (20). Moreover, (30)be
omes

pµ + κuµ + ε(ηb,µ − ηa,µ) = 0.This is equivalent to (21). Summarizing up, we get the optimality system for yµ,
uµ, and pµ,(32) (yµ)t −∇(A∇yµ) + c0yµ = uµ in Q,

∂nyµ + αyµ = 0 on Σ,
yµ(0) = 0 in Ω,

(33) −(pµ)t −∇(A∇pµ) + c0pµ = ηb,µ − ηa,µ in Q,
∂npµ + αpµ = 0 on Σ,

pµ(T ) = yµ − yd in Ω,

pµ + κuµ + ε(ηb,µ − ηa,µ) = 0 a.e. in Q,(34)
(35) ηa,µ ≥ 0, yµ + εuµ − ya ≥ 0, ηa,µ(yµ + εuµ − ya) = µ a.e. in Q,

ηb,µ ≥ 0, yb − εuµ − yµ ≥ 0, ηb,µ(yb − εuµ − yµ) = µ a.e. in Q.Noti
e that (29) 
an be rewritten as µ = ηa,µ(yµ+εuµ−ya), µ = ηb,µ(yb−yµ−εuµ).5.2. Convergen
e. In Se
tion 5.1, we established the existen
e of the 
entral path
µ 7→ wµ for all �xed µ > 0. Now we pro
eed with proving the 
ontinuity of themapping µ 7→ wµ and the 
onvergen
e towards a solution w̄ of (11)�(12).The unique minimizer wµ of (Pµ) is the solution of F

′

µ(w) = 0, hen
e
H(wµ; µ) := (SD)∗(SDwµ − yd) + κD∗Dwµ − µ

wµ − ya
+

µ

yb − wµ

= (D∗S∗SD + κD∗D)wµ − D∗S∗yd − µ

wµ − ya
+

µ

yb − wµ
= 0.By Corollary 5.7, we know wµ −ya ≥ τ (µ) and yb −wµ ≥ τ (µ) for all su�
ientlysmall µ > 0. H is Fré
het-di�erentiable in all dire
tions w ∈ L∞(Q) for all µ > 0.Let ∂µH denote the derivative of H with respe
t to µ and let ∂wH be the derivativeof H with respe
t to w. The derivative ∂wH is

∂wH(w; µ) = D∗S∗SD + κD∗D +
µ

(w − ya)2
+

µ

(yb − w)2
.(36)It satis�es the estimate

(v, ∂wH(w; µ)v) = (SDv, SDv)Ω+κ (Dv, Dv)+µ

(

v

w − ya
,

v

w − ya

)

+µ

(

v

yb − w
,

v

yb − w

)

≥ κ
1

‖D−1‖2
‖vBy Lemma 5.3, ∂wH is 
ontinuous in L∞(Q) for all w ∈ L∞(Q) with ya ≤ w ≤ yba.e. in Q. We show the boundedness of the inverse (∂wH)−1 in L∞(Q).



12Theorem 5.9. For all µ > 0, the mapping ∂wH(w; µ) : L∞(Q) → L∞(Q) is abije
tion. Its inverse is uniformly bounded for all µ > 0; i.e. there exists a 
onstant
cinv > 0 su
h that

‖∂wH(w; µ)−1‖L∞(Q)→L∞(Q) ≤ cinv for all µ > 0 and for all w ∈ W.The proof is the same as the one for Lemma 4.1 in [18℄, 
f. the argumentationthere.Theorem 5.10. For µ ↓ 0, wµ 
onverges towards the solution w̄ of (11)�(12).There is a 
onstant cpath > 0, su
h that
‖wµ − w̄‖L∞(Q) ≤ cpath

√
µholds for all su�
iently small µ.The proof is analogous to the one of Theorem 4.3 in [18℄ for the ellipti
 
asewith a unilateral 
onstraint. However it is more te
hni
al in view of our bilateral
onstraints. The main idea of the proof is to estimate ‖w′‖L∞ . In Lemma 6.5 wewill derive a similar result for a s
aled norm that shows the te
hnique of this proof.6. An interior point algorithmA 
on
eptual interior point algorithm in fun
tion spa
e is given by the followingsteps.Algorithm 1.Choose 0 < σ < 1, 0 < eps, and an initial fun
tion w0 ∈ L∞ su
h that ya + τ ≤

w0 ≤ yb − τ holds for some τ > 0. Take µ0 > 0, and set k = 0.while µk > eps do {
µk+1 = σµk ,
dk+1 = −∂Hw(wk; µk+1)

−1H(wk; µk+1)
wk+1 = wk + dk+1k = k+1} The 
ode-sequen
e in the while-loop performs one 
lassi
al Newton step for theequation H(wk+1; µk+1) = 0 with �xed µk+1.In the numeri
al analysis, we have to impose 
ertain restri
tions on σ to guar-antee 
onvergen
e.In the following, we denote the solutions of (Pµ) asso
iated with the parameter

µk by subs
ripts, i.e. wµk
is a point on the 
entral path and solves H(wµk

; µk) = 0.On the other hand, let wk , k = 1, 2, ... denote the iterates of Algorithm 1 asso
iatedwith the parameter µk. Figure 1 illustrates the situation.Under our assumptions, the Newton method provides, for �xed µk, a uniquesolution wµk
. It 
onverges quadrati
ally to wµk

, if the starting point (in the Figure,we 
hoose wk−1) is su�
iently 
lose to wµk
.To prove the 
onvergen
e of our method in fun
tion spa
e, we show that

‖wk − wµk
‖ ≤ c

√
µk and ‖wk − w̄‖ ≤ cσkholds for some 
onstant c > 0. Clearly, it holds that

wk+1 − wk = dk+1.
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wµk

w
k−1

wµk−1

w0

w
k

wµk+1

w
k+1

Figure 1. Some iterates of Algorithm 1 and the asso
iated pointson the 
entral path.
In 
ontrast to the Algorithm 5.1 in [18℄, the Newton 
orre
tor is assumed to beexa
t for simpli
ity, i.e. we assume to 
ompute dk+1 exa
tly. Certainly, this is notrealisti
 for a pra
ti
al implementation. However, we do not aim at estimating hereall errors that o

ur in a real 
omputation.6.1. S
aled norms. Lo
al norms are a valuable tool in the analysis of interiorpoint methods. Here we will use the a�ne s
aled norm

‖w‖µ := ‖φ(µ)w‖L∞(Q) ,where φ(µ) is de�ned by
φ(µ) =

√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
.(37)For the theory of a�ne s
aled norms, we refer to [3℄. First, we provide some resultson this s
aled norm.Lemma 6.1. For all w ∈ L∞(Q), the norm ‖ · ‖µ satis�es the estimate

‖w‖L∞(Q) ≤
ε√
κ
‖w‖µ.Proof. It holds by the de�nition of ‖ · ‖µ and φ(µ) that

‖w‖µ = ‖φ(µ)w‖L∞(Q) ≥ ‖
√

κ

ε2
w‖L∞(Q) =

√

κ

ε2
‖w‖L∞(Q).

�Lemma 6.2. For every w ∈ L∞(Q), the norm ‖ · ‖µ ful�lls
c1
√

µ‖w‖L∞(Q) ≤ ‖w‖µ ≤ c2√
µ
‖w‖L∞(Q).



14Proof. It holds that
‖w‖µ = ‖φ(µ)w‖L∞(Q) =

∥

∥

∥

∥

√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w

∥

∥

∥

∥

L∞(Q)

≤
√

κ

ε2
+

µ

τ (µ)2
+

µ

τ (µ)2
‖w‖L∞(Q) ≤

√

κ

ε2
+

2µ

(cτµ)2
‖w‖L∞(Q)

≤
√

κ

ε2
µ0 +

2

c2
τ

1√
µ
‖w‖L∞(Q) =

c2√
µ
‖w‖L∞(Q),where we have used Corollary 5.7. On the other hand, we have

‖w‖µ = ‖
√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w‖L∞(Q)

≥ ‖
√

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w‖L∞(Q).Now, ya, yb ∈ L∞(Q) yields

max{‖w − ya‖L∞(Q), ‖yb − w‖L∞(Q)} < max
x,t∈Q

{yb(x, t) − ya(x, t)} =: cmax,hen
e
‖w‖µ ≥ ‖

√

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w‖L∞(Q) >

√
2µ

cmax
‖w‖L∞(Q),so that the 
onstant c1 :=

√
2

cmax
satis�es the statement of the lemma. �Lemma 6.3. Let 0 < θ < c1cτ be given, where cτ is de�ned in Corollary 5.7 and c1is given by Lemma 6.2. Then it holds for all w ∈ Bµ(wµ; θ

√
µ) := {w ∈ L∞(Q) :

‖w − wµ‖µ ≤ θ
√

µ}
‖∂wH(w; µ)−1η‖µ ≤ cφ‖φ(µ)−1η‖L∞(Q) ∀ η ∈ L∞(Q),where cφ is de�ned by cφ = 1 + ε2

κ |Q|‖K‖L2(Q)→L∞(Q) < ∞.Proof. Let us �rst dis
uss the form of the operator D. We have by its de�nition
D = (G + εI)−1. Take w = Dz, then z = D−1w = (G + εI)w = Gw + εw. Onthe other hand, εw = z − Gw = z − GDz = (I − GD)z. Altogether, we have
D = 1

ε (I − GD).From that, we get the representation
D∗D =

1

ε2
(I − GD)∗(1 − GD) =

1

ε2
(I − (GD)∗ − GD + (D∗G∗GD)).We de�ne K = D∗S∗SD+ κ

ε (G∗D∗DG−(G∗D∗+GD)). This operator assemblesthe 
onstant parts of ∂wH. The derivative of ∂wH(w; µ) = D∗S∗SD + κD∗D +
µ

(w−ya)2 + µ
(yb−w)2 reads now

∂wH(w; µ) = D∗S∗SD +
κ

ε2
(I − (GD)∗ − GD + (D∗G∗GD)) +

µ

(w − ya)2
+

µ

(yb − w)2

= D∗S∗SD +
κ

ε2
((GD)∗ − GD + (D∗G∗GD)) +

κ

ε2
+

µ

(w − ya)2
+

µ

(yb − w)2

= K +
κ

ε2
+

µ

(w − ya)2
+

µ

(yb − w)2
= K + φ2(µ).



15Here, we have used the feasibility of w given by w ∈ Bµ(wµ; θ
√

µ) and Corollary5.7. S
aling the inverse of ∂wH by φ(µ), the identity
φ(µ)∂wH(w; µ)−1φ(µ) = φ(µ)

(

K + φ2(µ)
)−1

φ(µ)

=
(

φ(µ)−1
)−1 (

(K + φ2(µ))
)−1 (

φ(µ)−1
)−1

=
(

φ(µ)−1
(

K + φ2(µ)
)

φ(µ)−1
)−1

=
(

φ(µ)−1Kφ(µ)−1 + I
)−1holds. From that we get the L2-estimate

‖φ(µ)∂wH(w; µ)−1η‖ = ‖φ(µ)∂wH(w; µ)−1φ(µ)φ(µ)−1η‖
= ‖(φ(µ)−1Kφ(µ)−1 + I)−1φ(µ)−1η‖
≤ ‖φ−1(µ)η‖,(38)where we used that K is a positive de�nite operator and ‖φ−1(µ)Kφ−1(µ) +

I‖L2(Q)→L2(Q) ≥ 1.Setting ω := ∂wH(w; µ)−1η, we have η = (K +φ2(µ))ω, hen
e φ2(µ)ω = η−Kωand
‖φ(µ)∂wH(w; µ)−1η‖L∞(Q) = ‖φ(µ)ω‖L∞(Q) = ‖φ(µ)φ(µ)−2(η − Kω)‖L∞(Q)

= ‖φ(µ)−1(η − Kω)‖L∞(Q)

≤ ‖φ(µ)−1η‖L∞(Q) + ‖φ(µ)−1Kω‖L∞(Q)

≤ ‖φ(µ)−1η‖L∞(Q) + ‖φ(µ)−1‖L∞(Q)‖Kω‖L∞(Q)

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖ω‖

= ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖φ(µ)−1φ(µ)∂wH(w; µ)−1η‖

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖φ(µ)−1‖‖φ(µ)∂wH(w; µ)−1η‖

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖φ(µ)−1‖‖φ(µ)−1η‖

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)

ε√
κ
|Q|‖φ(µ)−1η‖L∞(Q),(39)where we inserted the L2-estimate (38) and used ‖w‖L2(Q) ≤

√

|Q|‖w‖L∞ . Withhelp of (39), we 
an �nally estimate
‖∂wH(w; µ)−1η‖µ = ‖φ(µ)∂wH(w; µ)−1η‖L∞(Q)

≤
(

1 +
ε2

κ
|Q|‖K‖L2(Q)→L∞(Q)

)

‖φ(µ)−1η‖L∞(Q),whi
h gives us the 
onstant cφ to obtain the desired result. �Lemma 6.4. For all 0 < θ < 1 and all w ∈ Bµ(wµ; θ
√

µ), the following estimateshold true:
w − ya ≥ (1 − θ)(wµ − ya) a.e. in Qand
yb − w ≥ (1 − θ)(yb − wµ) a.e. in Q.



16Proof. By its de�nition, the diagonal pre
onditioner φ(µ) satis�es a.e. in Q

√

µ

(wµ − ya)2
≤ φ(µ)and

√

µ

(yb − wµ)2
≤ φ(µ)for all ya < wµ < yb. For all w ∈ Bµ(wµ; θ

√
µ) we obtain

∥

∥

∥

∥

w − wµ

wµ − ya

∥

∥

∥

∥

L∞(Q)

=

∥

∥

∥

∥

w − wµ√
µ

√

µ

(wµ − ya)2

∥

∥

∥

∥

L∞(Q)

≤ 1√
µ
‖φ(µ)(w − wµ)‖L∞(Q)

=
1√
µ
‖w − wµ‖µ < θ < 1,sin
e w ∈ Bµ(wµ, θ

√
µ). From wµ − ya > 0 a.e. in Q we therefore get

±(w − wµ) ≤ θ(wµ − ya) a.e. in Q,hen
e, multiplying the minus-version by (−1) and adding on both sides (wµ − ya),
w − ya ≥ (1 − θ)(wµ − ya).By the same argumentation we obtain the estimate yb −w ≥ (1− θ)(yb −wµ). �Lemma 6.5. Let w

′

µ =
∂wµ

∂µ = −∂wH(w; µ)−1∂µH(w; µ) be the derivative of wµwith respe
t to µ. Then the µ-norm of w
′

µ is bounded by a 
onstant depending on√
µ, i.e.

‖w′

µ‖µ ≤
√

2cφ√
µfor all 0 < µ ≤ µ0.Proof. We follow the proof in [17℄, Theorem 5.9. First, we have ‖w′

µ‖L∞(Q) ≤ c√
µ .We use Lemma 6.3 and estimate

‖w′

µ‖µ = ‖∂wH−1(wµ; µ)∂µH(wµ; µ)‖µ

≤ cφ‖φ−1(µ)∂µH(wµ; µ)‖L∞(Q)

= cφ

∥

∥

∥

∥

φ−1(µ)

(

1

yb − wµ
− 1

wµ − ya

)∥

∥

∥

∥

L∞(Q)

.

From the de�nition of φ(µ) we see immediately
φ(µ) =

√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
>

√

µ

(wµ − ya)2
+

µ

(yb − wµ)2
.



17This gives us
‖w′

µ‖µ ≤ cφ

∥

∥

∥

∥

∥

(
√

µ

(wµ − ya)2
+

µ

(yb − wµ)2

)−1(
1

yb − wµ
− 1

wµ − ya

)

∥

∥

∥

∥

∥

L∞(Q)

= cφ

∥

∥

∥

∥

∥

1√
µ

√

(wµ − ya)2(yb − wµ)2

(yb − wµ)2 + (wµ − ya)2
(wµ − ya) − (yb − wµ)

(wµ − ya)(yb − wµ)

∥

∥

∥

∥

∥

L∞(Q)

≤ cφ

∥

∥

∥

∥

∥

1√
µ

(wµ − ya)(yb − wµ)
√

(yb − wµ)2 + (wµ − ya)2
(wµ − ya) + (yb − wµ)

(wµ − ya)(yb − wµ)

∥

∥

∥

∥

∥

L∞(Q)

=
cφ√
µ

∥

∥

∥

∥

∥

(wµ − ya) + (yb − wµ)
√

(yb − wµ)2 + (wµ − ya)2

∥

∥

∥

∥

∥

L∞(Q)

≤ cφ

√
2√

µwhere we used, that (x + y)/
√

(x2 + y2) <
√

2 for all x, y > 0. �Moreover, we need the following relation between the µk- and the µk+1-norms.Lemma 6.6. For all w ∈ L∞(Q), and all 0 < σ < 1, 0 < µ < µ0, it holds that
‖w‖σµ ≤ cσµ‖w‖µ.where cσ = 3σ1/2−

√
2cφ .Proof. First, we observe

‖w‖σµ = ‖φ(σµ)w‖L∞(Q) =

∥

∥

∥

∥

φ(σµ)

φ(µ)
φ(µ)w

∥

∥

∥

∥

L∞(Q)

≤
∥

∥

∥

∥

φ(σµ)

φ(µ)

∥

∥

∥

∥

L∞(Q)

‖w‖µ.

Now, the main work of the proof is to estimate ∥∥
∥

φ(σµ)
φ(µ)

∥

∥

∥

L∞(Q)
=

∥

∥

∥

∥

κ

ε2 + σµ

(wσµ−ya)2
+ σµ

(yb−wσµ)2

κ

ε2 + µ

(wµ−ya)2
+ µ

(yb−wµ)2

∥

∥

∥

∥

1/2

L∞(Q)

.We de�ne two fun
tions υa(σ), υb(σ) ∈ L∞(Q)

(υa(σ))(x, t) =

(

wµ − ya

wσµ − ya

)

(x, t) and (υb(σ))(x, t) =

(

yb − wµ

yb − wσµ

)

(x, t).Be
ause µ 7→ wµ is a di�erentiable mapping from R+ to L∞(Q), the fun
tions υa,
υb map (0, 1] di�erentiably into L∞(Q). We derive a bound for the fun
tion υa,the proof of boundedness for υb is 
ompletely analogous.First, we estimate the derivative of υa with respe
t to σ:
‖υ′

a(σ)‖L∞(Q) =

∥

∥

∥

∥

wµ − ya

(wσµ − ya)2
w

′

σµµ

∥

∥

∥

∥

L∞(Q)

≤
∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥

∥

1

wσµ − ya
w

′

σµ

∥

∥

∥

∥

L∞(Q)

µ

=

∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥

∥

√
σµ

wσµ − ya
w

′

σµ

∥

∥

∥

∥

L∞(Q)

µ√
σµ

≤
∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥

∥

√

κ

ε2
+

σµ

(wσµ − ya)2
+

σµ

(yb − wσµ)2
w

′

σµ

∥

∥

∥

∥

L∞(Q)

µ√
σµ

=

∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥w
′

σµ

∥

∥

∥

σµ

µ√
σµ

≤ ‖υa(σ)‖L∞(Q)

√
2cφ

σ
.(40)



18by Lemma 6.5. With the identity υa(σ) = υ(1) −
1
∫

σ

υ
′

(γ) dγ we �nd by (40)
‖υa(σ)‖L∞(Q) ≤ ‖υa(1)‖L∞(Q)+

∥

∥

∥

∥

∥

∥

1
∫

σ

υ
′

a(γ) dγ

∥

∥

∥

∥

∥

∥

L∞(Q)

≤ 1+

1
∫

σ

√
2cφ

γ
‖υa(γ)‖L∞(Q)dγ.

Now we use the Gronwall Lemma to 
on
lude
‖υa(σ)‖L∞(Q) =

∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

≤ σ−
√

2cφ .(41)In an analogous manner, we get the estimate
‖υb(σ)‖L∞(Q) =

∥

∥

∥

∥

yb − wµ

yb − wσµ

∥

∥

∥

∥

L∞(Q)

≤ σ−
√

2cφ .(42)Next, we noti
e the following auxiliary result: For all positive numbers c, a1, a2,
b1, b2. it holds

c + a1 + a2

c + b1 + b2
≤ 1 +

a1

b1
+

a2

b2
.(43)To verify this, we dis
uss three 
ases. If a1 + a2 ≤ a2 + b2, then the left-handside is less or equal than one so that the inequality is true.If a1 > b1 and a2 > b2, then we have

c + a1 + a2

c + b1 + b2
= 1 +

a1 − b1

c + b1 + b2
+

a2 − b2

c + b1 + b2
≤ 1 +

a1

b1
+

a2

b2
.If a1 + a2 > b1 + b2 and a1 > b1 but a2 < b2, then a2−b2

c+b1+b2
is negative, hen
e

c + a1 + a2

c + b1 + b2
≤ 1 +

a1 − b1

c + b1 + b2
≤ 1 +

a1

b1
≤ 1 +

a1

b1
+

a2

b2
.The 
ase a1 < b1 but a2 > b2 is analogous. Now we 
an pro
eed to estimate

∥

∥

∥

φ(σµ)
φ(µ)

∥

∥

∥

L∞(Q)
. For �xed (x, t) ∈ Q, we distinguish between two 
ases:(i) (φ(σµ))(x, t) ≤ (φ(µ))(x, t). Then (φ(σµ)

φ(µ)

)

(x, t) ≤ 1 is satis�ed.(ii) If (φ(σµ))(x, t) > (φ(µ))(x, t), then by 
ombining (43), (42), and (41) we 
anestimate
1 <

(

φ(σµ)

φ(µ)

)

(x, t) =





√

κ
ε2 + σµ

(wσµ−ya)2 + σµ
(yb−wσµ)2

√

κ
ε2 + µ

(wσµ−ya)2 + µ
(yb−wσµ)2



 (x, t)

≤
(
√

1 + σ
(wµ − ya)2

(wσµ − ya)2
+

(yb − wµ)2

(yb − wσµ)2

)

(x, t)

≤
(

1 +

√

σ
(wµ − ya)2

(wσµ − ya)2
+

√

σ
(yb − wµ)2

(yb − wσµ)2

)

(x, t)

=

(

1 +
√

σ
wµ − ya

wσµ − ya
+
√

σ
yb − wµ

yb − wσµ

)

(x, t)

≤ 1 + 2σ1/2−
√

2cφ ≤ 3σ1/2−
√

2cφ ,



19where we used cφ ≥ 1, so that 1/2−
√

2cφ < 0, and hen
e it holds σ1/2−
√

2cφ > 1 forall cφ. Clearly (i) and (ii) imply ‖φ(σµ)
φ(µ) ‖L∞(Q) ≤ max{1, 3σ1/2−

√
2cφ}. By σ < 1,

cφ ≥ 1, we see that the maximum is 3σ1/2−
√

2cφ . �Lemma 6.7. (Lips
hitz-Condition) For all 0 < θ < 1 and all w, ŵ ∈ Bµ(wµ, θ
√

µ),the following Lips
hitz 
ondition holds:
(44) ‖∂wH(w; µ)−1(∂wH(w; µ) − ∂wH(ŵ; µ))(w − ŵ)‖µ ≤ 2

√
2cφ

(1 − θ)3
√

µ
‖w − ŵ‖2

µ.Proof. The main idea of the proof is analogous to the proof of Lemma 5.5 in [18℄for unilateral 
onstraints. The di�
ulty here is the more 
ompli
ated stru
ture of
φ(µ), what results in a more te
hni
al proof. For 
onvenien
e of the reader, weperform it here in detail.By Lemma 6.3 we obtain
‖∂wH(w; µ)−1(∂wH(w; µ) − ∂wH(ŵ; µ))(w − ŵ)‖µ

≤ cφ‖φ(µ)−1(∂wH(w; µ) − ∂wH(ŵ; µ))(w − ŵ)‖L∞(Q)

= cφ

∥

∥

∥

∥

φ(µ)−1

(

µ

(w − ya)2
+

µ

(yb − w)2
− µ

(ŵ − ya)2
− µ

(yb − ŵ)2

)

· (w − ŵ)

∥

∥

∥

∥

L∞(Qsin
e the 
onstant parts of ∂wH(w; µ) are 
ompensated by the 
onstant parts of
∂wH(ŵ; µ), 
f. the de�nition of ∂wH(w; µ) in (36). By Lemma 6.4, we get w−ya ≥
(1 − θ)(wµ − ya) and yb − w ≥ (1 − θ)(yb − wµ). The same holds for ŵ. Be
ausethe Lips
hitz 
onstant of x−2 for x ≥ a > 0 is 2a−3, we 
an estimate
‖∂wH(w; µ)−1(∂wH(w; µ)−∂wH(ŵ; µ))(w − ŵ)‖µ

≤ cφ‖φ(µ)−1

(

2µ

(1 − θ)3(wµ − ya)3
+

2µ

(1 − θ)3(yb − wµ)3

)

(w − ŵ)2‖L∞(Q)

=

√
2cφ

(1 − θ)3

∥

∥

∥

∥

(

µ

φ(µ)3(wµ − ya)3
+

µ

φ(µ)3(yb − wµ)3

)

φ(µ)2(w − ŵ)2
∥

∥

∥

∥

L∞(Q)

≤
√

2cφ

(1 − θ)3

∥

∥

∥

∥

µ

φ(µ)3(wµ − ya)3
+

µ

φ(µ)3(yb − wµ)3

∥

∥

∥

∥

L∞(Q)

‖w − ŵ‖2
µ

≤
√

2cφ

(1 − θ)3

(

∥

∥

∥

∥

µ

φ(µ)3(wµ − ya)3

∥

∥

∥

∥

L∞(Q)

+

∥

∥

∥

∥

µ

φ(µ)3(yb − wµ)3

∥

∥

∥

∥

L∞(Q)

)

‖w − ŵ‖2
µ.

We show that µ
φ(µ)3(wµ−ya)3 and µ

(φ(µ)3(yb−wµ)3 are essentially bounded by 1/
√

µ.First, we �nd
φ(µ)3(wµ − ya)3 =

(
√

κ

ε2
(wµ − ya)2 +

µ(wµ − ya)2

(wµ − ya)2
+

µ(wµ − ya)2

(yb − wµ)2

)3

≥ (
√

µ)
3
.



20From that we get ∥∥∥ µ
φ(µ)3(wµ−ya)3

∥

∥

∥

L∞(Q)
≤ µ/µ3/2 = 1/

√
µ. The same holds for theterm 
ontaining yb. Altogether, this yields the Lips
hitz 
ondition(45)

‖∂wH(w; µ)−1(∂wH(w; µ)−∂wH(ŵ; µ))(w−ŵ)‖µ ≤ 2
√

2cφ

(1 − θ)3
√

µ
‖w−ŵ‖2

µ, k = 1, 2, ...

�Lemma 6.8. Let ‖w0 − wµ0
‖µ0

≤ θ
√

µ0 with µ0 > 0, 0 < θ < 1/32cφ and let be σgiven by ( θ+1
4
3 θ+1

)1/2cφ

< σ < 1. Then the iterates of Algorithm 1 obey
‖wk − wµk+1

‖µk+1
≤ θ

√
µk+1 = θ

√
µ0σ

k/2.Proof. We pro
eed by indu
tion. Assume that ‖wk −wµk
‖ ≤ θ

√
µk holds for some

k ∈ N ∪ {0}. It holds
‖wk − wµk+1

‖µk+1
≤ ‖wk − wµk

‖µk+1
+ ‖wµk

− wµk+1
‖µk+1

≤ ‖wk − wµk
‖µk+1

+

∥

∥

∥

∥

∥

∫ µk

µk+1

w
′

τ dτ

∥

∥

∥

∥

∥

µk+1

.By Lemma 6.3, the �rst item 
an be estimated as
‖wk − wµk

‖µk+1
≤ 3σ1/2−

√
2cφ‖wk − wµk

‖µk
≤ 3σ1/2−

√
2cφθ

√
µk.The term 
ontaining the integral 
an be estimated in the following way: Setting

µk+1 = σ̄τ , σ̄ = µk+1

τ , we obtain
∥

∥

∥

∥

∥

∫ µk

µk+1

w
′

τ dτ

∥

∥

∥

∥

∥

µk+1

≤
µk
∫

µk+1

(

3 (µk+1/τ )
1/2−

√
2cφ

)

‖w′

τ‖τ dτ ≤ 3µ
1/2−

√
2cφ

k+1

µk
∫

µk+1

τ−(1/2−
√

2cφ)

√
2cφ√
τ

dτ

= 3
√

2cφµ
1/2−

√
2cφ

k+1

µk
∫

σµk

τ−1+
√

2cφ dτ = 3
√

2cφµ
1/2−

√
2cφ

k+1





τ
√

2cφ

√
2cφ

∣

∣

∣

∣

∣

µk

σµk





= 3µ
1/2−

√
2cφ

k+1

(

µ
√

2cφ

k − σ
√

2cφµ
√

2cφ

k

)

= 3σ1/2−
√

2cφµ
1/2−

√
2cφ

k

(

1 − σ
√

2cφ

)

µ
√

2cφ

k

= 3σ1/2−
√

2cφ

(

1 − σ
√

2cφ

)

µ
1/2
k ,where we used Lemma 6.6 and Lemma 6.5.Summarizing up, we obtain

‖wk − wµk+1
‖µk+1

≤ 3σ1/2−
√

2cφθµ
1/2
k + 3σ1/2−

√
2cφ

(

1 − σ
√

2cφ

)

µ
1/2
k

= 3σ1/2−
√

2cφ

(

θ + 1 − σ
√

2cφ

)

µ
1/2
k

= 3σ−
√

2cφ

(

θ + 1 − σ
√

2cφ

)√
µk+1,(46)what gives us the 
onstant c(θ, σ, cφ) := 3σ−

√
2cφ

(

θ + 1 − σ
√

2cφ

).Now we 
hoose σ su
h that c(θ, σ, cφ) ≤ 4θ holds. Later, we need this result toperform one Newton step in dire
tion wk+1, where we use, that the initial value



21
wk for that step is in a 4θ-ball around the asso
iated wµk

on the 
entral path. Thedesired inequality is equivalent with
θ + 1 − σ

√
2cφ ≤ 4

3
θσ

√
2cφ .Resolving for σ

√
2cφ , we obtain

θ + 1
4
3θ + 1

≤ σ
√

2cφand hen
e
σ ≥

(

θ + 1
4
3θ + 1

)1/
√

2cφ

.Now we have found a suitable 0 < σ < 1, su
h that 3σ−
√

2cφ

(

θ + 1 − σ
√

2cφ

)

≤ 4θ.Sin
e the right-hand side is less then one, hen
e we 
an �nd σ < 1 satisfying thisinequality. For our 
hoi
e of σ, the result (46) reads
‖wk − wµk+1

‖µk+1
≤ 4θ

√
µk+1.(47)Next, we perform one Newton-step in the dire
tion wµk+1

. With cφ ≥ 1 in mind,we 
an 
hoose e.g. θ = 1/32cφ < 1/32 , where we have 4θ < 1/8. In the ball
Bµk+1

(wµk+1
, 4θ

√
µk+1) we obtain by Lemma 6.7 the Lips
hitz-
onstant

ω =
2
√

2cφ

(1 − 4θ)3
√

µk+1
.By our assumption on w0 and by our 
hoi
e of σ and θ, we have wk ∈ Bµk+1

(wµk+1
, 4θ

√
µk+1) ⊂

Bµk+1
(wµk+1

, 2/ω), 
f.(47). Now the assumptions of the Newton-Mysovskii-Theoremare ful�lled, 
f. Theorem 1.2 in [4℄. (We have an "a�ne invariant" Lips
hitz 
on-stant ω and wk is 
lose to wµk+1
, i.e. wk ∈ Bµk+1

(wµk+1
, 2/ω).) The theoremprovides now

‖wk+1 − wµk+1
‖µk+1

≤ ω

2
‖wk − wµk+1

‖2
µk+1

<

√
2cφ

(1 − 4θ)3
√

µk+1
‖wk − wµk+1

‖2
µk+1

.By our 
hoi
e of σ, we have by (47)
‖wk − wµk+1

‖2
µk+1

≤ 16θ2µk+1,and �nally, we get the estimate
‖wk+1 − wµk+1

‖µk+1
≤ 16

√
2cφθ2

(1 − 4θ)3
√

µk+1
µk+1 =

16
√

2cφθ2

(1 − 4θ)3
√

µk+1.For θ = 1
32cφ

≤ 1
32 we have

16
√

2cφθ2

(1 − 4θ)3
=

16
√

2cφ

322c2
φ

(

1 − 1
8cφ

)3

=

√
2

64cφ

(

8cφ − 1

8cφ

)3

≤ 1

32cφ
= θ.Altogether we have

‖wk+1 − wµk+1
‖µk+1

≤ θ
√

µk+1



22for θ = 1/32cφ and for all σ >
(

θ+1
4
3 θ+1

)1/2cφ . �Theorem 6.9. Assume that ‖w0−wµ0
‖µ0

≤ θ
√

µ0, where 0 < σ < 1 and 0 < θ < 1are given by Lemma 6.8. Then the iterates wk of Algorithm 1 
onverge linearlytowards the solution w̄ of problem (P): There is some c > 0, su
h that
‖wk − w̄‖L∞(Q) ≤ cσk/2, k = 0, 1, 2, ...Proof. We have

‖wk − w̄‖L∞(Q) ≤ ‖wk − wµk
‖L∞(Q) + ‖wµk

− w̄‖L∞(Q)

≤ ε√
κ
‖wk − wµk

‖µk
+ ‖wµk

− w̄‖L∞(Q),(48)where the 
onstant ε√
κ
results from the transition from the L∞-norm to the

µ-norm, 
f. Lemma 6.1. The �rst item 
an be estimated by Lemma 6.8 as
‖wk − wµk

‖µk
≤ θ

√
µk = θ

√
µ0σ

k/2.The se
ond item of (48) 
an be estimated by the length of a segment of the 
entralpath: Theorem 5.10 yields ‖wµk
− w̄‖L∞(Q) ≤ cpath

√
µk = cpath

√
µ0σ

k/2. Togetherwith (48), we arrive at
‖wk − w̄‖L∞(Q) ≤

(

ε√
κ

θ + cpath

)√
µ0σ

k/2 =: cσk/2.

�7. Numeri
al examples7.1. Dis
retization of the optimality system. In Se
tion 5.1, we have intro-du
ed the optimality system (32)�(35) for our problem with state equation (2).In view of our test examples, we will use now the extended form (5) of the stateequation, for whi
h the theory works as well, 
f. Remark 3.5. In (35) we write
ηa,µ = µ

εu+y−ya
and ηb,µ = µ

yb−εu−y and we have to solve the optimality system
yt −∇ · (A∇y) + c0y = u + f in Q,

∂ny + αy = g on Σ,
y(0) = y0 in Ω,

(49)
−pt −∇ · (A∇p) + c0p = − µ

εu+y−ya
+ µ

yb−εu−y in Q,

∂np + αp = 0 on Σ,
p(T ) = y(T ) − yd in Ω,

(50)
κu + p − εµ

εu + y − ya
+

εµ

yb − εu − y
= 0 a.e. in Q.(51)Our test examples are de�ned in one-dimensional domains Ω = (a, b). Let 0 =

t0 < t1 < ... < tn = T be a partion of [0, T ], and denote by δk = tk − tk−1 the timesteps. De�ne yk = y(·, tk), uk = u(·, tk), pk = p(·, tk), gk = g(·, tk),(ya)k = ya(·, tk),
(yb)k = yb(·, tk), (yd)k = yd(·, tk), k = 0, 1, ..., n. Using an impli
it Euler s
heme fordis
retizing (49) and (50) in time, we have to solve a sequen
e of ellipti
 problems

−∇ · (A∇yk+1) +
1 + δk+1c0

δk+1
yk+1 =

1

δk+1
yk + uk+1 + fk+1,

∂nyk+1 + αyk+1 = gk+1(52)



23for k = 0, ..., n − 1, starting at
y(·, 0) = y0.To get a fully dis
rete system, we use linear �nite elements to dis
retize the ellipti
subproblems. Let a = x0 < x1 < ... < xn = b be a partition of (a, b) = Ω ⊂ R with

hi = xi+1 − xi, i = 0, ..., n− 1. By using standard hat fun
tions with ϕi(xj) = δij ,
i, j ∈ I, where I ⊂ N is the set of indi
es of the nodes xi, we 
an identify the
oe�
ients of the FEM approximation of a fun
tion by the values of the fun
tion fin the nodes, f(x) ≈∑i∈I f(xi)ϕi(x). In all what follows, we identify the fun
tions
f , y, u, et
. by their 
oe�
ent ve
tors (f(xi)), (y(xi)), (u(xi)) and denote themby the same symbols, i.e., we will write f instead (f(xi)) et
.By the sti�ness matrixK = (Kij), Kij =

∫

Ω

(aij∇ϕj) · (∇ϕi) dx,the mass matri
esMk+1 = (Mij)k+1, Mij,k+1 =

∫

Ω

1 + δk+1c0

δk+1
ϕjϕi dx,M̄ = (M̄ij), M̄ij =

∫

Ω

ϕjϕi dx,and the matri
es asso
iated with the boundary Γ,Q = (Qij), Qij =

∫

Γ

αϕjϕi ds,G = (Gi), Gi =

∫

Γ

gϕi ds,the FEM representation of the ellipti
 subproblems is given by(53) (K+Mk+1 +Q)yk+1 =
1

δk+1
M̄yk + M̄(uk+1 + fk+1) +Gk+1,

k = 0, 1, ..., n − 1. Analogously, the adjoint equation is dis
retized by
(K+Mk +Q)pk = M̄(

µ

yk + εuk − (ya)k

)

−M̄(

µ

(yb)k − yk − εuk

)

+
1

δk
M̄pk+1(54)for k = n − 1, ..., 0 with terminal 
ondition

pn = yn − yd.The ve
tors µ
yk+εuk−(ya)k

and µ
(yb)k−yk−εuk

are de�ned by
(

µ

yk + εuk − (ya)k

)

i

=
µ

(yk)i + ε(uk)i − ((ya)k)iand
(

µ

(yb)k − yk − εuk

)

i

=
µ

((yb)k)i − (yk)i − ε(uk)i
,for i = 0, ..., n, respe
tively. These equations are 
oupled through the dis
reteversion of the gradient equation(55) κuk + pk +

εµ

(yb)k − yk − εuk
− εµ

yk + εuk − (ya)k
= 0,



24for k = 0, ..., n.We arrange the 
oe�
ient ve
tors as follows:
z = [yT

0 , yT
1 , . . . , yT

n , uT
0 , uT

1 , . . . , uT
n , pT

0 , pT
1 , . . . , pT

n ]T .The identities yT
0 = y(0) and pT

n = yT
n − yT

d are implemented by identity matri
esin the dis
rete optimality system. We write now the optimality 
onditions as anonlinear system
F (z; µ) := Ξz + Ψ(z) + Φ = 0,where Ξ is a large, sparse matrix, essentially built of blo
ks K + Mk + Q on thediagonal and M̄ on the subdiagonal. Ψ is a fun
tion that 
overs the nonlinearityand Φ is a ve
tor that 
ontains the 
onstant parts of the equations (53)�(55).One di�
ulty in the Algorithm 1 is to �nd a suitable initial fun
tion z0. Thefollowing steps provide a feasible initial fun
tion that 
an be expe
ted su�
iently
lose to zµ0

. Moreover, the time and spa
e dis
retizations 
an be adapted duringthe 
omputations.Algorithm 2. (Computation of z0 on an adapted grid)(i) De�ne equidistant initial partitions T0 = {t0, t0 + δt, ..., T} of [0, T ] and
Ω0 = {a = x0, x0 + h, ..., xn = b} of Ω = (a, b), where δt and h are the�xed initial stepsizes in time and spa
e, respe
tively.(ii) Choose z0 = (yT

0 , uT
0 , pT

0 )T feasible, i.e. ya ≤ y0 + εu0 ≤ yb, while p0 
anbe taken arbitrarily.(iii) Assemble the matri
es K, Mk, M̄, Q, and the ve
tor G.(iv) Choose µ0 > 0. Compute a solution of
F (z; µ0) = 0by the Newton Method.(v) Re�ne the spa
e and time grids by suitable methods.(vi) Reassemble all matri
es and 
ompose the asso
iated system matrix Ξ. In-terpolate z onto the new grids.Remark 7.1. After step (iv) of Algorithm 2, we have determined a solution ofa dis
rete Newton system of PDEs. In prin
iple, this solution might be taken asthe starting value for Algorithm 1. However, our numeri
al experien
e showed thatthe dis
retization error may dominate the entire error, so that Algorithm 1 fails.Therefore, an adaptive re�nement of the grid turned out to be ne
essary. This stepis the main aim of Algorithm 2.The spatial grids may 
hange between the di�erent time steps. After Algorithm2 is �nished, the joint re�nement of all spatial grids is taken as the �xed spatialgrid for Algorithm 1. The dis
retized version of Algorithm 1 is started with z0.For all 
omputations, we used Matlab 7.1.0 R14 on a Pentium IV ma
hine with1GB memory. The linear subproblems are solved by dire
t methods. For re�nigthe meshes in Algorithm 2, we used for the time re�nement ode15s with the settingRelTol = 1e-3, MaxOrder = 1, and BDF=on. For the grid re�nement in spa
e, weapplied an error indi
ator fun
tion similar to the one des
ribed in [12℄. The spatialgrid is �xed in all time steps.



257.2. Examples.Example 1. We tested our method by the problem
min J(y, u) :=

1

2
‖y(T ) − yd‖2

L2(Ω) +
κ

2
‖u‖2

L2(Q)subje
t to
yt − ∆y = u in Q,

∂ny + 10y = 0 on Σ,

y(0) = y0 in Ω,and to the mixed 
ontrol-state 
onstraints
y + εu ≥ ya := max{−100(t(t − 1) + x(x − 1)) − 49.0, 0.5} a.e. in Q.We take Ω = (0, 1) ⊂ R, T = 1. Further, let there be given yd ≡ 0 and y0 = sin (πx).Obviously, this problem �ts in our general setting with α = 10.Un
ontrolled solutions of the heat equation are known to de
ay exponentially intime. The 
onstraints are 
hosen to form an obsta
le for this de
ay su
h that a 
on-trol a
tion is needed to ful�l them. In this way, a reasonable a
tive set is expe
ted.Although we do not know the exa
t solution of this problem, the 
omputations 
on-�rmed this behaviour.In our examples, there is no upper bound yb, but it is 
lear that our method
overs the one-sided 
ase as well, 
f. our 
omments before Lemma 5.2. In 
ontrastto the next example, here the exa
t optimal 
ontrol ū and the asso
iated fun
tions

ȳ, p and ηa are unknown.The initial ve
tor for Algorithm 2 was z0 with all entries equal to zero and theinitial stepsizes were h = 0.01 and δt = 0.005. In Algorithm 1, we 
hoose σ = 0.8,
µ0 = 10−3, and eps = 10−5. Figures 2 and 3 show the 
omputed optimal solutions
ȳ , p , ū and ηa = µ

εu+y−ya
for the regularized problem with ε = 10−3 and κ = 10−3.In 
ontrast to the next example, we only provide the �gures of the �nal result,sin
e the distan
e to the optimal solution 
annot be estimated. In this example, westopped Algorithm 2 after two outer iteration to re�ne the time and spa
e grids.The interior-point algorithm needed up to 40 inner iterations for de
reasing µ.

(a) optimal 
ontrol (b) optimal stateFigure 2. Solutions to Example 1, 
ontrol and state.
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(a) adjoint state (b) Lagrange multiplierFigure 3. Solutions to Example 1, adjoint and approximation onthe multiplier.
Example 2. Here, we 
onsider the slightly modi�ed problem

min J(y, u) :=
1

2
‖y(T ) − yΩ‖2

L2(Ω) +
κ

2
‖u‖2

L2(Q) +

∫∫

Q

yQy dxdt,

subje
t to
yt − ∆y = u + f in Q,

y = 0 on Σ,
y(0) = y0 in Ω,

(56)
and to the mixed 
ontrol-state 
onstraints

ya ≤ y + ε(u + f) a.e. in Q.The last term in the obje
tive fun
tion was added to 
onstru
t an example withexpli
itly known optimal solution. This term does not 
hange our theory. Wesimply have to add its derivative yQ to the right hand side of the adjoint equation.We 
onstru
t an optimal solution whi
h ful�lls the optimality 
onditions (49)�(51) for the unregularized problem, i.e., for ε = 0.Remark 7.2. In Se
tion 5, it was shown that the Lavrentiev-regularization is es-sential for our theory. We 
onsider here an unregularized problem, be
ause our aimis to 
onstru
t an example with a regular Borel measure as Lagrange multiplier.In Se
tion 4 we have shown that for ε > 0 the Lagrange multipliers are fun
tionfrom L2, only for ε = 0 we will get measures. On the other hand, in some re
entpapers, e.g. in [21℄, [14℄, [18℄, Se
tion 7, and [20℄, the 
onvergen
e of the optimal
ontrol ūε of the regularized problem to the optimal 
ontrol ū of the unregularizedone is shown with order √
µ. For su�
iently small ε, e.g. ε < 10−6, we 
an expe
tthat the regularization error 
an be negle
ted in 
omparison with the error ‖uµ − ū‖measured in the L2-norm. Indeed, this is our numeri
al observation.



27The integral ∫∫
Q

yQy dxdt in the obje
tive fun
tion leads to the adjoint equation
−pt + ∆p = yQ − µ

y−ya
in Q,

p = 0 on Σ,
p(T ) = y(T ) − yd in Ωinstead of (50).Constru
tion of the optimal solution. We 
hoose Ω = (0, π), T = 1, andde�ne the optimal state by ȳ(x, t) := e−t sin (x). Together with ȳ(x, 0) = sin (x) and

ȳ(x, T ) = e−1 sin (x) we obtain from (56) and yt −∆y = 0 the 
ondition ū + f = 0.From the gradient equation (51) and ε = 0 we therefore get f = 1
κp. Next,we 
onstru
t the state 
onstraint su
h that ȳ tou
hes the bound ya only on a set

(t1, t2)×
{

π
2

}. This set has measure zero, so that we 
onstru
t a Lagrange multiplieras a regular Borel measure. We take t1 = 0.3 and t2 = 0.6. The bound ya is �xedby ya(x, t) = η(t)θ(x) with
η(t) =











1
2

t−t1
t0−t1

+ e−t1 t
t1

, t ∈ (0, t1),e−t, t ∈ (t1, t2),e−t2 t−1
t2−1 + 1

8
t−t2
1−t2

, t ∈ (t2, 1),and
θ(x) =

{

3
π − 0.5, x ∈ (0, π/2),

2.5 − 3
π , x ∈ (π/2, π).The adjoint state is 
onstru
ted by the ansatz p = φ(t)v(x). To this aim, let

φ(t) =

{

− sin2 ( π
t2−t1

(t − t1)), t ∈ (t1, t2),

0 else.The derivative of φ is given by the 
ontinuous fun
tion
φ

′

(t) =

{

− 2π
t2−t1

cos
(

( π
t2−t1

)(t − t1)
)

sin
(

π
t2−t1

(t − t1)
)

, t ∈ (t1, t2)

0 else.Moreover, we introdu
e the 
ontinuous pie
ewise linear fun
tion
v(x) =

{

2
π x x ∈ [0, π

2 ]

2 − 2
π x x ∈ [π

2 , π].The se
ond derivative of v(x) with respe
t to x is a multiple of the Dira
 measure
on
entrated at π/2:
vxx = − 4

π
δπ

2
.The adjoint equation gives

−pt − pxx = −µ + yQ,so we 
an set
µ = φ(t)vxx = −φ(t)

4

π
δπ

2
≥ 0and

yQ = −φ
′

(t)v(x).



28Obviously, µ and y − ya ful�ll the 
omplementary sla
kness 
onditions
∫∫

Q

(y − ya) dµ(x, t) = 0,

y − ya ≥ 0 a.e. in Q, µ ≥ 0.Having the exa
t optimal solutions, we are able to 
on�rm the 
onvergen
e ratesfor uµ as µ → 0. We �x κ = 10−2, ε = 10−6, σ = 0.8, µ0 = 10−3, and eps = 10−5.Figures 4 and 5 show the numeri
al solutions.

(a) optimal 
ontrol (b) optimal stateFigure 4. Solutions to Example 2, 
ontrol and state.

(a) adjoint state (b) Lagrange multiplierFigure 5. Solutions to Example 2, adjoint and approximation onthe multiplier.With the given exa
t solutions of the unregularized problem and our 
hoi
e of
ε, we observe linear 
onvergen
e in u and y. Noti
e that ε is very small 
omparedwith the expe
ted dis
retization error and also 
ompared with µ. Therefore, it isreasonable to 
onsider the distan
e to the exa
t solution at ε = 0 rather than tothe one 
orresponding to ε = 10−6. Figure 6(
) shows the value of the obje
tivefun
tion Jµ.
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(
) value of the obje
tive fun
tion JµFigure 6. Convergen
e for µ → 10−4. µ-axis s
aled logarithmi
ally.In Table 1, we present the errors of the solutions and the value of the obje
tivefun
tion for Example 2 for sele
ted values of µ.
µ ‖yµ − ȳ‖/‖ȳ‖ ‖uµ − ū‖/‖ū‖ ‖pµ − ū‖/‖p̄‖ J(y, u; µ)

8.0−2 2.2954 4.3332−1 4.3332−1 7.3130
4.3980−3 1.7467−2 2.9738−2 2.9738−2 6.1299
7.3787−4 3.8415−2 6.6231−3 6.6234−3 6.1211
3.0223−4 2.0936−2 4.0684−3 4.0685−3 6.1204
9.9035−5 1.3354−2 3.1801−3 3.1799−3 6.1202Table 1. Relative errors in y, u, and p , and values of J(y, u)depending on µ.
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