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1. INTRODUCTION

In this paper, we extend our investigations on interior point methods for elliptic
state-constrained optimal control problems in [18] and [13] to the parabolic case.

The main difficulty of the numerical analysis of interior point methods for such
problems is the lack of regularity of Lagrange multipliers associated with the state
constraints. Therefore, it is helpful to improve the properties of the multipliers by
suitable regularization techniques.

For instance, this task can be accomplished by discretization and subsequent
application of interior point methods. We mention the work by Bergounioux et al.
[1], who carefully compare the performance of primal-dual active set strategies and
interior point methods for elliptic problems, Grund and Résch [5], who solve such
problems with maximum norm functional, and Maurer and Mittelmann [16], who
handle several state-constrained elliptic control problems by standard interior point
codes.

To consider the interior point algorithm in function space, we suggested in [18],
[13] a Lavrentiev type regularization. The Lavrentiev regularization of elliptic prob-
lems was introduced in [14]. This method ensures regular Lagrange multipliers
and preserves, in some sense, the structure of a state-constrained control prob-
lem. Moreover, compared with a direct application of interior point methods to
state-constrained problems, the regularization improves the performance of the al-
gorithm, [13].

In [26, 27], primal-dual interior point methods are analyzed for ODE problems
in an infinite dimensional function space setting, and their computational realiza-
tion by inexact pathfollowing methods has been suggested. In [18], this method
is extended to the optimal control of linear elliptic PDEs with regularized point-
wise state constraints, where the analysis is performed in L°°-spaces. Nonlinear
equations are considered in the recent paper [24]. In particular, the convergence
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of primal-dual interior point methods is shown in LP-spaces with p < oo for the
control-constrained case.

Today, there exist also several papers on the numerical analysis of interior point
methods for parabolic optimal control problems. For instance, trust-region interior
point techniques were considered by M. Ulbrich, S. Ulbrich, and Heinkenschloss
[25] for the optimal control of semilinear parabolic equations in a function space
setting. Affine-scaling interior-point methods are presented for semilinear parabolic
boundary control in [23]. Sachs and Leibfritz [10, 9, 8] considered interior point
methods in the context of SQP-methods for parabolic optimization problems.

In our paper, we are able to prove the convergence of a conceptual primal interior
point method in function space. We confine ourselves to a problem with linear
equation and an objective functional with observation at the final time. This seems
to be more challenging in the analysis than functionals of tracking type.

The analysis is very similar to the one for the elliptic case that was discussed
in [18]. Therefore, we concentrate on those parts of the proofs that need essential
modifications for parabolic problems. For parts of the theory that are completely
analogous to elliptic problems, we refer to [18].

In the parabolic case, the presence of pointwise state constraints causes stronger
restrictions on the dimension of the spatial domain than for elliptic equations. We
do not impose control constraints. Therefore, the natural control space is of type L2.
To derive first-order necessary optimality conditions of Karush-Kuhn-Tucker type,
the state functions should be continuous. This restricts the theory to distributed
problems in one-dimensional domains.

This obstacle is completely overcome by our Lavrentiev regularization, which is
crucial for the analysis. After regularization, we obtain Lagrange multipliers for
any dimension of the domain. Moreover, we do not need constraint-qualifications.
This remarkable advantage of our regularization method is worth mentioning.

The paper is organized as follows: After defining our problem and introducing
our main assumptions in Section 2, Section 3 is devoted to known results concerning
the parabolic equation. In particular, we regard the properties of the control-to-
state mapping.

In Section 4, we introduce the Lavrentiev type regularization. We motivate
why the Lagrange multipliers are regular and show that the optimal control of the
regularized problem converges towards the optimal control of the original problem.
Section 5 is devoted to existence and convergence of the central path defined by the
interior point method. In Section 6, we discuss the convergence of a simple interior
point algorithm in function space and finally, in Section 7, we confirm our theory
by some numerical examples.

2. PROBLEM SETTING

We consider the optimal control problem

. 1 K
1) min Iy, w) = 5 ly(T) — yalls + 5l
subject to the parabolic initial boundary value problem

Yy — V- (AVy)+coy = u inQ,
(2) Oy+ay = 0 inX,
y(0) = 0 inQ,



and to the pointwise state constraints

(3) Yo (2, 1) < y(z,t) < yp(z,t)  for all (x,t) € Q.
In this setting, @ ¢ RN, N > 1, is a bounded domain with C''-boundary T,
and (0,7) is a fixed time interval. We define @ := Q x (0,7) and ¥ :=T x (0,7).
A = (a;j(2)), i, = 1,..., N, is a symmetric matrix with a;; € C7(2), v € (0,1).
It is assumed to satisfy the following condition of uniform ellipticity: There is
an m > 0 such that

AMA@)A > mA\? forall A € RY and all 2 € Q.

Moreover, functions ¢g € L=(Q), yq € L>(R2), and y,, v from C(Q) are given that
satisfy yq(x,t) < yp(x,t) for all (x,t) € Q.

By the continuity of v, and ¥, there is some cg > 0, such that it holds
(4) yp(x,t) — yalx, t) > co V(z,t) € C.
Notations: By || - || Lr(ary, M € {Q, X, Q}, we denote the standard norm of LP(M).
By (-,-)z2(ar) the inner product of L?(M) is denoted. In L?(Q), the norm and the
inner product are written without subscript, i.e. || - || := | - [[z2(@) and (-,-) =
(-,-)r2(q) Is the associated inner product of L?(Q). We use || B||y_w for the norm
of a linear continuous operator B: V — W. If V.= W = L?(Q) we just write | B|.
Throughout the paper, ¢ is a generic positive constant. To shorten the notation,
we write e.g. B+ wfya instead of B + wfya 1, although B is an operator and wfya
is a function. By 0,, we denote the conormal derivative with respect to A, where n
is the outward normal direction on T'.

3. SOME FACTS ABOUT THE PARABOLIC EQUATION

In this section, we recall some known facts about the parabolic equation defined
in (2). For the proof, we refer to [2] and [7], or to the survey in [22].

By W(0,T), we denote the Hilbert space of functions y € L?(0,T;V) with time
derivative y' in L?(0,7;V*), endowed with its standard norm, cf. [11]. For the
notion of a weak solution to (2) we refer to [7] or [11].

Theorem 3.1. The control-to-state mapping u — y associated with equation (2)
is linear and continuous from L?(Q) to W (0,T).

With the linearity of the parabolic pde, we can write y = Ggu, where the
control-to-state mapping G : L?(Q) — W(0,T) is continuous in view of Theorem
3.1.

The mapping u — y(T), considered from L?(Q) to L?(Q), the "observation” of
y at T, is denoted by S. Define Er : W(0,T) — L?(Q2) by Ez : y + y(T). Then S
is given by S = ErGy.

If we consider G with range in L?(QQ), then we denote this operator by G, i.e.
G = EGg, where E is the embedding operator from W (0,7 to L*(Q).

Corollary 3.2. The mapping S : u — y(T) is continuous from L?*(Q) to L*(f).
Summarizing up, we have introduced the mappings
Go & 12(Q) — W(0,T),
G LHQ) — L*(Q),
S L*Q) — L*(Q).
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Remark 3.3. Although we have fized the spaces of L?-type, where G and S are
defined, we shall consider them also in other spaces without changing their notation,
as in the next theorem.

Theorem 3.4. Let Q C RY be a bounded C*'-domain and assume f € L"(Q) with

r>N/24+1, g€ L5(X) fors > N+1 and yg € C(Q). Then the weak solution y of

Yy —V(AVy) +coy = f inQ,
ohytay = g onX,
y(0) = wo mQ

belongs to C(Q) and there is a constant c independent of u, such that

ey < e(lflz@ + gl
Proof. We refer to [2], or [19], cf. also [22], Lemma 7.10. O

Ls(z) T ||y0||C(Q)) .

For a spatial dimension of N = 2, we need r > 2 and for N = 3 we need r > 5/2
to satisfy the assumptions.

Remark 3.5. We present the theory for homogeneous boundary data and zero
initial value. Problems with fized inhomogeneous data in the parabolic equation,
yy—V-(AVy)+coy = u+f inQ,
(5) dhytay = g in %,
y(0) = wo in €1,
where f € L"(Q),r > N/2+1,g € L*(%), s > N + 1, and yo € C(Q) are given,

can be easily transformed to a problem of type (1)—(3). One has to separate the
fized part of y associated with (f,g,yo) and to subtract this part from yq.

4., MIXED CONTROL-STATE CONSTRAINTS

In this section, we consider the regularized optimal control problem

. 1 K
(P) min J(y,u) = 3 [9(T) ~ valld + 51l
subject to
y— V- (AVy)+co = u inQ,
(6) Oy+ay = 0 ond,
y(0) = 0 inQ,

and to the mixed (e-regularized) control-state constraints
(7) Yo <y+eu<y, ae. inQ.

We are able to show that the optimal control u. of this problem tends in L?(Q)
to the solution u of the original problem, provided that a Slater type condition
is satisfied for the original one. The method of proof is analogous to the one in
Hintermiiller et al. [6]. We do not prove this result, since we aim at concentrating
on the interior point method for problem (P) rather than to discuss the relation to
the unregularized problem (1)—(3). Following [14], we transform the mixed control-
state constraints into control constraints. By the operator G, introduced in Section
3, we can write

y+eu=Gu+eu=(G+el)u.



The function w := y + cu is considered as a new auxiliary control. Then we have

u = Dw, where D : L*>(Q) — L*(Q) is defined by
(8) D= (G+el)™L
D is well defined, as the next result shows:
Lemma 4.1. For all € # 0, the operator D exists and is continuous in L*(Q).

Proof. First we show that the kernel of G + ¢/ is trivial. To see this, consider the
equation

Gu +eu = 0.
This is equivalent to u = G(—e~1u). By the definition of G, u solves the system
up — Au 4 cou = —%u in Q,
Opu+au = 0 on X,
u@0) = 0 in Q.

By taking (—1/¢)u to the other side of the equation we see that u solves a homo-
geneous initial-boundary value problem that has only the trivial solution.

It remains to show that e/ + G is surjective. Then the Banach theorem on the
inverse operator ensures the continuity of D = (eI +G) 1. Let w € L?*(Q) be given
arbitrarily and consider the equation

cu+ Gu = w.

To solve it, we consider the equation

y—Ay+oy = f(w-y) ingQ,
9) Ohy+ay = 0 on X,
y(0) = 0 in 0.

Taking —%y to the other side, we see that this equation has a unique solution

y € W(0,T). Now we define

(10) = g(w—y).
Then y = Gu holds and hence
1
= —(w — Gu).
u= - (w u)
Obviously, this u solves the equation eu + Gu = w and we have shown the surjec-
tivity. ]

4.1. Regular Lagrange multipliers. By the technique used in [13] for an elliptic
problem, we will motivate the existence of regular multipliers. We do not directly
need this result for our convergence analysis. However, it shows how the regu-
larization helps to construct a problem with better properties. In particular, this
explains why our numerical method does not have to deal with measures as multi-
pliers. First of all, we transform problem (P) with mixed control-state constraints
(7) in a control-constrained problem with new control w := D~'u. With S and D,
we transform problem (P) to one depending on the control w as

. 1 K
(1) min F(w) = L [SDw — yal3a(0) + | Dw?

subject to
(12) Yo <w <wyp ae. inQ.



This transformation of our control problem (P) will be used for the analysis of
the interior point algorithm, while all computations are performed with the original
form of (P).

The functional F is continuously Fréchet-differentiable on L?(Q). Its Fréchet
derivative is represented by

F'(w)v = ((SD)*(SDw — y4),v) + £ (D*Dw,v) .
We can identify it with the function
g:=(SD)*(SDw — ya) + kD*Dw € L*(Q),

the Riesz representation of the derivative. Using the same arguments as in [13, 14],
we define Lagrange multipliers 1, and n, € L?(Q) by

na(z,t) = g(@,t)4,
m(z,t) = gl,t)-,
so that g = g4 —g— = 1a — 7.
Remark 4.2. In all what follows, a bar as in @, §, or w etc. indicates optimality.

The optimal solution w fulfills, together with 7, and 7, the following necessary
and (by convexity) sufficient optimality conditions:

(13) S*(SDw — ya) + &Dw + (D*)"H(my —na) = 0,
together with the complementary conditions
(Mo W —ya) = 0, (Mo, yp — W) =
(14) Na(x,t) 0, m(z,t) > 0 ae in@Q
w(x,t) — yo(z,1) 0, w(x,t)—w(xz,t) > 0 ae inQ.

Following the same steps as in [15], 74, 75 are verified to be the Lagrange multipliers
associated with the mixed constraints (7).

IV v

4.2. Transformation in terms of PDEs. By D~! = eI + G we can write (13)
in the form

(15) S*(SDw — ya) + kDW + ey — Ma) + G*(m —na) = 0.
Re-substituting Dw = @, and defining an adjoint state p by

(16) p=G"(m —1a) + 57 (St — ya),

we obtain the optimality conditions

(17) e

(18) ptru = (e —m),

together with the complementarity conditions (14), where we resubstitute @ :=
£l + .

The adjoint state p defined by (16) is the unique solution of the following adjoint
equation:

—pt =V - (AVp)+cop = m—n. inQ,
(19) Opp+ap = 0 on X,
p(T) = §T)-ya Q.



The adjoint equation has a unique solution p € W(0,T'). It holds

Ipllw o) < cw (IIme = nall2@) + 19(T) — yallL2())

with some ¢,, not depending on the given data. This follows from Theorem 3.1
after the transformation of time 7 :=7T — t.

Remark 4.3. The case € = 0 is formally covered by the optimality system (14)-
(18), too. Here, possibly, na, ny belong to M(Q), the space of reqular Borel mea-
sures defined at Q. Then equation (19) is a parabolic PDE with measures on the
righthand-side, which may even appear in the boundary and terminal conditions,
we refer to Casas [2]. In this case, our theory does not work, since the operator D

is unbounded and not defined on the whole space L*(Q)).
In summary, we have derived the following theorem:

Theorem 4.4. For all € # 0, problem (P) has a unique optimal control . with
associated state .. There exist non-negative Lagrange multipliers n, € L?(Q) and
m € L*(Q) and an associated adjoint state p € W(0,T), such that the optimality
system (14)—(18) is satisfied.

The existence of the optimal control follows in particular from the fact that the
equation eu + Gu = y, is solvable for all nonzero . Therefore, the admissible set
is never empty. Due to the convexity of the objective functional F', the necessary
optimality conditions are also sufficient for optimality.

5. INTERIOR-POINT METHOD IN FUNCTION SPACE

By the interior point method, the constrained problem (11) (12) is transformed
into a formally unconstrained problem by adding a logarithmic barrier term to the
objective functional F'. In this section, we show that the transformed problems are
solvable and that the associated central path exists.

In terms of PDE, the problem (P) is converted to the following one:

R 1 K
min Ju(y, u) = y(T) = yalley + 5 lulg — u// In (y +eu — ya) + In (yo — u — y) dadt
o)

subject to the equation (2).

Let us first state the associated necessary optimality conditions. In a standard
way, e.g. by the formal Lagrange-technique explained in [22], we obtain the adjoint
equation

—pe =V - (AVp)+cap = -ttt nG,
(20) op+ap = 0 on X,
p(T) = y(T)—ya in Q,

and the gradient equation

(21) P+ Ku— =K + o = 0 aein@.
yteu—"yYa yp—cu—y

The solution (w,,y,,pu), if it exists, is expected to converge to the solution of
Problem (P) as p | 0. We prove the existence of this and the optimality conditions
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by considering the penalized version of Problem (11) (12), i.e.,
(Py)
1

: K
min F,(w) := §||SDw —yalld + §||Dw||2Q - u// In(w —ya) +In (yp — w) dzdt,
Q

where 1 > 0 is the path parameter that will tend to zero. This is a formally
unconstrained problem, but the logarithmic barrier term can only be finite for
w € L*(Q) with y, < w < y a.e. in Q. Therefore, the admissible set of (P,) is
open in some sense. Notice that F),(w) is a convex functional.

To prove the existence of a solution of problem (P,,), we apply a method that has
been introduced in [18]. Tt considers the minimization of F), in a closed subset and,
at the same time, finally permits to show that the solution w, has some positive
distance to the bounds: We have y, +7 < w, <y, — 7 for some sufficiently small
7 > 0 that depends on p.

5.1. Existence. For fixed 7 > 0, we consider the auxiliary problem

A i F .

A setr iy T

The admissible set of this problem is closed, and the functional F), is bounded.
We define the following admissible sets:

(22) W o= {wel?Q)|ys <w <y, ae inQ},
(23) W, = {wel*(Q)|ya+7<w<1y,—7ae inQ}

Theorem 5.1. For every 0 < 7 < ¢g/3, cqg defined in (4) and for all p > 0,
problem (Auz) has a unique solution w, ,. There is a bound c not depending on T
and 1 such that it holds ||wr | =gy < c.

Proof. 1t is clear that W, is non-empty, convex, closed and bounded. F), is strictly
convex and continuous on W, and hence weakly lower semicontinuous. Therefore,
standard arguments show the existence of a unique solution of (Aux). The uniform
boundedness of the solution is an obvious consequence of the boundedness of W, C

W in L=(Q). O

In the case of one-sided constraints y +cu <y, or y, <y -+ eu, Theorem 5.1
cannot be shown in this way, since the associated set W is not bounded. Here, the
following Lemma applies that can be proven completely analogous to Lemma 3.2
in [18].

Lemma 5.2. For all p > 0, it holds that F,,(w) — oo if |[w|]| — oo and w > y, or

w < yp, respectively.

The function F), is directionally differentiable at w; , in all directions w — w, ,
with w € W,. The optimality of w. , gives

Fl(wrp)(w—wry) > 0 YweWs,

where Fl; denotes the directional derivative of F),. According to the definition of
F

1)
(24) (gT,,uvw - U)THU‘)Q Z O V'LU € WT,

we obtain the variational inequality



where the function g, , € L?(Q) is defined by

(25) Grp = (SD)*(SDw,, — ya) + kD" Dw, ,, — K + K

Wr p — Ya Yp — Wr

Next, we define two auxiliary functions, namely

Prp = (SD)"(SDw;, —yq) and  gr, = kD" Dw, .
We show that they are bounded in L°°(Q), uniformly with respect to 7 and u. To
this aim, we need the following result.

Lemma 5.3. The operators D and D* are continuous in L>(Q).

Proof. To find u = Dw, we have to solve the equation eu+ Gu = w. In view of (9)
and (10), this is equivalent to the following two steps: We solve first (9) to find y.
Next, we obtain u by formula (10). Thanks to Theorem 3.4, the mapping w — y is
linear and continuous in L°°(Q). Therefore, the same holds true for the mapping
w+— u=e '(w—y(w)). This shows the continuity of D.

The proof for D* is analogous, since G* is related to an adjoint parabolic equation
that has the same properties as equation (9). O

The following Lemma asserts the L°°-boundedness of p and gq.
Lemma 5.4. There is a positive constant ¢, 4 such that
[Pl @) + llarullLe(@) < cpq
holds true for all 0 < T < ¢ /3 and all > 0.
Proof. We have
1p7ullzoe (@) + 97l (@) < I(SD)* (SDwr = ya)llLo(@) + K D" Dwr pul Lo (@)-

In view of Theorem 3.4 and Lemma 5.3, all operators appearing in this formula are
continuous in L°°-spaces on associated domains. Moreover, we have assumed that
yqa € L®(2). Therefore, the result of the Lemma is an immediate conclusion of
Theorem 5.1. ]

The main result of this section, the existence of the central path, can be shown
completely analogous to the elliptic case discussed in [18]. Nevertheless, we briefly
sketch the proof for convenience of the reader. To this aim, we define the sets

M+(’7’, :u') = {(xat) € Q | g‘f'”u(xvt) > O}a
M—(THU‘) = {(‘T’t) €Q|g‘r,u($’t) <O}a
Mo(rop) = {(5.1) € Q| gop(a,t) = 0.

Lemma 5.5. For all i > 0, there are positive numbers 14 (1) and 7_(p) such that,
for all 0 < 7 < 7(u), the sets M (1) and M_(7) have measure zero.

Proof. A standard evaluation of (24) yields for almost all (z,t) € @ that

wrp () = { Yoz, t) + 7, (x,t) € My(T, 1)
AT yp(x,t) — 7, (x,t) € M_(1, ).
Almost everywhere on M, (7, 1), Lemma 5.4 implies
1
yb(x7 t) - ya(az, t) -T

I
0 < gT,M(axt)=p7,u(x,t)+q7,ﬂ(;v7t)—;+

[y
26 < - 42
(26) > Cpyg - + o
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For 7 | 0, the right hand side tends to —oco, a contradiction for all sufficiently
small 7 > 0, say 7 < 74 (p). Consequently, M (7, 1) is of measure zero for these 7.
Analogously, M_ (7, 1) can be handled. Define now 7(u) := min{ry (), 7— (1)}, we
have found the bound 7(u), for that the Lemma holds. O

Now we can formulate the main result of this section.

Theorem 5.6. For all ;1> 0 and all 0 < 7 < 7(u), the solution w,,, of (Aux) is
the unique solution w, of problem (P ).

Proof. Since Q@ = My(7)UM(1)UM_(7) and the set M (7) UM _(7) has measure
zero for 0 < 7 < min{7y (p), 7— (1)}, we have

gT,u(='E7t) = 0 ae inQ.
Therefore, it holds that

’

F, (wr )b = //gw(x,t) h(z,t)dxdt =0 Yh € L*(Q),
Q

and hence w, , satisfies the necessary optimality condition for problem (P,). By
convexity, the necessary conditions are sufficient for optimality. Strong convexity
yields uniqueness (notice that x > 0). In view of this, w, , is the unique solution
w,, of (P,). O

Corollary 5.7. Let be pg > 0 an initial value. Then, for all 0 < p < g, the
solution w,, of (P,) satisfies
(27) Ya(,1) +7(p) S wp(@,t) <yp(z,t) —7(p), ae inQ,
where T(p) = c-p0 > 0 and ¢, is given by
1

Cr=—.
Ko
Cp,q +25Q

Proof. By Theorem 5.6, we have w,, = w, for all 0 < 7 < 7(u). In view of the
definition of (Aux), w,, satisfies

ya(I,t) + T([L) < ’LUH(I, t) < yb(xat) - T(:U‘)
for all 7 < 7(p), i.e., inequality (27) is satisfied. Let us quantify 7(x). From (26),
we get £ < ¢, + 2%, hence
[ u

28 T > > = C [,
(28) N Cp,q+2% - Cp,q+25_£ TM

where ¢, = , what gives us 7 > 7(u) = ¢ pu. O

1
cp,q+2cﬂQ)—
Remark 5.8. Collorary 5.7 shows that minimizing J,, generates solutions in the
interior of the feasible set, so that the name "interior point method" is justified.

After having solved the problem of existence, let us verify and re-formulate the
optimality conditions (20)—(21). We denote by u,, the optimal control with state
Yu given by eu, +y, = w,. The associated adjoint state is p,,. Define 7, , and 1 ,
by
1 p
(29) Na,p

=0 My = ———
Yu +<€up, —Ya a Yo — EUY — Ypu
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Multiplying (25) by (D*)~! = (e + G*), we obtain in view of Dw,, = u, and
Su,, =y, that

(30) S*(yu(T) - yd) + KUy, + 5(77177” - na,u) + G” (nb,u - 77a7u) =0.
This is the counterpart to (15). We set
(31) Pp = S (yu(T) - yd) + G*(nbu - na,u)'

Then, analogous to (19), p., Y, u, solve the adjoint equation (20). Moreover, (30)
becomes

Pu + KUy + 5(771),;1, - na,u) =0.
This is equivalent to (21). Summarizing up, we get the optimality system for y,,,
Uy, and p,,

(Yu)t = V(AVyY,) +coyy = w, inQ,
(32) Onyu+oay, = 0 on X,
y,(0) = 0 inQ,
—(pu)t —V(AVpu) +copp = Mo —Nayp inQ,
(33) 8np;,e + Ofpu == 0 on Z,
Pu (1) = Yu — Yd in €,
(34) Pu+ KUy + My —Nap) = 0ae in @,
(35) Nag 20, Yu + Uy —Ya 20, Nap(Yu +EUy —Ya) = p  ae inQ,
Mo = 0, Yo — €uy — yu > 0, Wb,;t(yb — EUy — yu) = u a.e.in Q.

Notice that (29) can be rewritten as pt = 7q,, (Y +€Up—Ya)s 1 = Mo, (Yo —Yp —EUL).

5.2. Convergence. In Section 5.1, we established the existence of the central path
w — w, for all fixed 1 > 0. Now we proceed with proving the continuity of the
mapping 4 — w,, and the convergence towards a solution w of (11)-(12).
The unique minimizer w,, of (P,) is the solution of Fl;(w) = 0, hence
no_n
Wy —Ya Yo — Wy
—= (D*S*SD + kD*D)w, — D*S*yy — —H— 4 1
Wy —Ya  Yb — Wy
By Corollary 5.7, we know w, —y, > 7(p) and y, —w,, > 7(u) for all sufficiently
small © > 0. H is Fréchet-differentiable in all directions w € L*>°(Q) for all u > 0.
Let 0,,H denote the derivative of H with respect to ;1 and let 9., be the derivative
of H with respect to w. The derivative 0, H is

H(wu;ﬂ) = (SD)*(SDU)“ - yd) + nD*Dw“ -

=0.

I H
36 OwH (wy = D*S*SD+ xkD*D + + .

It satisfies the estimate

v

1

v v v
v, O H (w; p)v) = (SDv, SDv)o+k (Dv, Dv)+ ( , ) + <
(0. H (s p)o) = ok (Do Dt ()
By Lemma 5.3, 9,,H is continuous in L>®(Q) for all w € L*>°(Q) with y, < w <y
a.e. in Q. We show the boundedness of the inverse (9,,H)~! in L>(Q).

—w’ Yy, —w

)

> e
D12



12

Theorem 5.9. For all > 0, the mapping O, H(w;p) : L™®(Q) — L>®(Q) is a
bijection. Its inverse is uniformly bounded for all ;n > 0; 1.e. there exists a constant
Cinv > 0 such that

(0w H (w; 1) ™ | £ (@)L (@) < Cinw for all 1> 0 and for all w € W.

The proof is the same as the one for Lemma 4.1 in [18], cf. the argumentation
there.

Theorem 5.10. For p | 0, w, converges towards the solution w of (11) (12).
There is a constant cpqin, > 0, such that

||wu - wHL“’(Q) < Cpath /B
holds for all sufficiently small p.

The proof is analogous to the one of Theorem 4.3 in [18] for the elliptic case
with a unilateral constraint. However it is more technical in view of our bilateral
constraints. The main idea of the proof is to estimate ||w’||z=. In Lemma 6.5 we
will derive a similar result for a scaled norm that shows the technique of this proof.

6. AN INTERIOR POINT ALGORITHM

A conceptual interior point algorithm in function space is given by the following
steps.

Algorithm 1.
Choose 0 < 0 < 1, 0 < eps, and an initial function w® € L> such that y, + 7 <
w® <y, — 7 holds for some T > 0. Take po > 0, and set k = 0.
while py, > eps do {

HEk+1 = OpE ,

d*TY = —OH (W pgr) " H (w05 piegr)

Wkt = wk 4+ gkt

= k+1

The code-sequence in the while-loop performs one classical Newton step for the
equation H(w**1; uy. 1) = 0 with fixed ppy1.

In the numerical analysis, we have to impose certain restrictions on o to guar-
antee convergence.

In the following, we denote the solutions of (P,) associated with the parameter
i by subscripts, i.e. w,,, is a point on the central path and solves H(w,, ; ux) = 0.
On the other hand, let w* , k = 1,2, ... denote the iterates of Algorithm 1 associated
with the parameter p;. Figure 1 illustrates the situation.

Under our assumptions, the Newton method provides, for fixed uj, a unique
solution w,,, . It converges quadratically to w,,, if the starting point (in the Figure,
we choose w*~1) is sufficiently close to w,,, .

To prove the convergence of our method in function space, we show that

¥ —w | < ey and Jub 0] < cot

holds for some constant ¢ > 0. Clearly, it holds that

WL — ok = gkt
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k+1 Wy,

w#k+1

Wo

F1GURE 1. Some iterates of Algorithm 1 and the associated points
on the central path.

In contrast to the Algorithm 5.1 in [18], the Newton corrector is assumed to be
exact for simplicity, i.e. we assume to compute d**! exactly. Certainly, this is not
realistic for a practical implementation. However, we do not aim at estimating here
all errors that occur in a real computation.

6.1. Scaled norms. Local norms are a valuable tool in the analysis of interior
point methods. Here we will use the affine scaled norm

[wlly = llo(wwllr=(q)
where ¢(p) is defined by

(37) ¢(u>—\/“+ p_ B

=] (wp —ya)*  (yp — wu)2.

For the theory of affine scaled norms, we refer to [3]. First, we provide some results
on this scaled norm.

Lemma 6.1. For all w € L*>(Q), the norm || - ||,, satisfies the estimate
€
ol < = ol

Proof. It holds by the definition of | - ||, and ¢(x) that

K K
lwlle = lle(wliz=@) = lly/ Zwlz=@ =/ Zlwli=@-

Lemma 6.2. For every w € L>(Q), the norm || - ||, fulfills

C2
cvil|w|e o) < |l < —=||lw|| =0
val @ < llwllu \/ﬁl Iz (@)



14
Proof. 1t holds that

_ H
e = Tl = |5 + o + e

L>=(Q)
K H 7 2u
< - —— @) S| =+ — .
= \/52 + IDE + ()2 [wll Q) = 52 + (crp1)? HU’HL Q)
K 2

1 C2
— ||W|| [, = ——||W||[,>= s
3\//?” Iz (@) \/ﬁll == @)

where we have used Corollary 5.7. On the other hand, we have
K T T
ol =y + + wllg
' e (we -y w2 T

0 I
> + W Lo (Q)-
e R e
Now, ya,yp € L(Q) yields

< ?,Lto'f'*

max{|w = yallz= @) Iy — wlze(@} < max {yp(z,1) = ya(z, 1)} = Cmaz,

hence
P [ V21
w||,, > + W|| oo > ——||w||L=(0Q),
ol 2 1[Gt + i@ > e el
so that the constant ¢; := Cﬁ satisfies the statement of the lemma. O

Lemma 6.3. Let 0 < 0 < cy¢, be given, where ¢, is defined in Corollary 5.7 and ¢,
is given by Lemma 6.2. Then it holds for all w € B, (w,;0\/1) := {w € L=(Q) :

w—wull, <0/n}
[0wH (w;0) 'l < colld(w)  nllp=@) Yne€L®Q),

where ¢y is defined by ¢y =1+ §|Q|HK||L2(Q)_,LW<Q) < 0.

N

Proof. Let us first discuss the form of the operator D. We have by its definition
D = (G +el)™'. Take w = Dz, then z = D™'w = (G +el)w = Gw + ew. On
the other hand, ew = z — Gw = z — GDz = (I — GD)z. Altogether, we have
D= %(I —GD,).

From that, we get the representation

DD = eiz(f _GD)(1-GD) = eiz(f — (GD)* — GD + (D*G*GD)).

We define K = D*S*SD+%(G*D*DG—(G*D*+GD)). This operator assembles
the constant parts of 9, . The derivative of 0, H(w;u) = D*S*SD + kD*D +

(w*l;la)z + (ybfw)z reads now
* Qrk K . o M M
OuH(wip) = D'S"SD+ 5 (I=(GD) = GD+(D'G*GD)) + +
( M) 2 ( ( ) ( )) (,w _ ya)Q (yb — w)2
* Q% K N o . ‘u ‘u
= DSSD+ S (GD) =GD +(D°GTGD)) + 5
5"SD+ - ((GD)" = GD + (D*G"G ))+52+(w—ya)2+(yb—w)2

B, H

o 2
v —wE - E W

K
K+—2+
e
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Here, we have used the feasibility of w given by w € By (w,;6,/it) and Corollary
5.7. Scaling the inverse of 0,,H by ¢(u), the identity

S(1)0uH (wi )~ (i) = () (K+¢2( )" 6(w)
= (@) (K + @) (o)
= () (K + W) ow) )
= (S Ko 1)

holds. From that we get the L?-estimate

[6(1) 0w H (w; ) "Ml = (1) 0w H (w; ) " (1) p (1) ]|
= (¢(w) " Ko(u) ™"+ 1) ()Ml
(38) < o™ (il

where we used that K is a positive definite operator and ||¢~ (u)K¢~1(u) +

Hr2@-r2(@) 2 1.
Setting w := 0y, H (w; ) ~'n, we have n = (K + ¢ (11))w, hence ¢?(pu)w = n— Kw
and

(1) O H (w; 1) " | Lo ()

ld(p)wllr=(q) = lo(u)d(1) 2 (n — Kw)|| 1= (q)

(1)
= llo(w) ™' (n = Kw)ll=(o)
< o)™ nlle=(@) + o) Kwllr<(o)
< o)™ nllz=(@) + I6() " =@ KWl = (@)
< lle¢(w)”

"0l L= (g \/—HKHL? Q)—r=@)llwll
= ||¢(/~L)_177HL°°(Q)+\/—||K||L2(Q)—>L°°(Q)”¢() (1) 0 H (w3 1)~ ]|
< |‘¢(/~L)7177HL°°(Q)+f”K”LQ(Q)—w‘X’(Q)”Qﬁ( 1)~ p(1) O H (wi )~ |

< o) ll=@) + 7”K”L?(Q)—»L‘”(Q)”Qb(,“)ilHH‘b(ﬂ)ilnH
(39) < o) nllr=(o +THKHL2 %oo(@)\/—IQIlW( 1)l @)

where we inserted the L?-estimate (38) and used ||w||12(q) < v/|Q|||w|| £ With
help of (39), we can finally estimate

10w H (w; )™l = 6(1) 0 H (w; 1) 1| L= ()
g2 _
< (1+ SIQlKIz@-1x@ ) 166 1l~co)
which gives us the constant c4 to obtain the desired result. O

Lemma 6.4. For all 0 < 6 <1 and all w € B, (w,;0/1t), the following estimates
hold true:

w—yq > (1—=0)(w, —ya) a.e inQ
and

yw—w>(1—60)(y —w,) ae in Q.
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Proof. By its definition, the diagonal preconditioner ¢(u) satisfies a.e. in @

m < ¢(:U)
and
ﬁ < ¢(M)

for all y, < w, < yp. For all w € By, (w,;6,/it) we obtain

- 7wl
L>(Q) Vi (Wy = Ya)?
1
<
VH

1
= —Jw—-w,],<0<1,

N/

since w € By, (wy, 0/1). From w, —y, > 0 a.e. in Q we therefore get

Hw—wu

Wy — Ya

L=(Q)

l[o(p) (w — wu)”Lw(Q)

+w—w,) < 0w, —yq) a.e. in Q,
hence, multiplying the minus-version by (—1) and adding on both sides (w, — y,),
w—1Ys > (1—0)(w, — Ya)-

By the same argumentation we obtain the estimate y, —w > (1 —6)(yp —w,). O

Lemma 6.5. Let w;t = 85;];‘ = =0y H (w; ) 710, H(w; 1) be the derivative of w,,

with respect to p. Then the p-norm of w;L 1s bounded by a constant depending on

VI i€

|| /|| <\/§C¢
w < Y7o
pltk \/,l_L
for all 0 < p < pg.

Proof. We follow the proof in [17], Theorem 5.9. First, we have ||w;||Loo(Q) < Lﬂ

We use Lemma 6.3 and estimate

||wu||u = ||awH_l(wu§M)auH(wm#)Hu
< C¢||¢71(ﬂ)auH(wu§N)HL“’(Q)

1 1 _ 1 )
‘(b (/1*) (yb_wu Wy — Ya

From the definition of ¢(u) we see immediately

dlp) = “+”+”>\/”+”

2 (wy—vya)? —wa)? V(W —va)? (o — wp)?

= C¢

L>=(Q)
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This gives us

/ m M -1 1 1
el = eo (\/ ~ Ya) +(yb—w)2> (yb—w S —y)
¢ a S ()

. V 2~ wa)® (= y) = (9= w,)

VH wu + (wp = Ya)?* (Wy —Ya) (Y — wy) L=(Q)
< e (wy ya)(yb wu) Wy —Ya) + (Y — wy)
B \//7 \/ (Yo — wp)? + (W — Ya)? (Wu = Ya) (Yo — wy) Lo (Q)
o || (W —Ya) £ (o — wy) V2

\/ﬁ \/(yb - wll«)2 + (wﬂ - yCL)2 Lx(Q) B \/'[_L
where we used, that (z +y)/+/(z% + y?) < V2 for all 2,y > 0. O

Moreover, we need the following relation between the py- and the py1-norms.
Lemma 6.6. For all w € L>®(Q), and all0 < o0 <1, 0 < p < po, it holds that
[wllon < copllw]],-
where ¢, = 31/2=V2es

Proof. First, we observe

P(op)
P(p)

L(Q) = H Q;(EI:))

P(p)w

[l
L=(Q)

o, = l[p(op)wl Lo (@) = H

1/2

ou i ou
(wop—va)? ' (yp—wopu)?
L

£
£2+

Now, the main work of the proof is to estimate

0#) H _
L@

K
52+

Le=(Q)

(wp—va)? +(yb*w;¢)2

We define two functions v, (o), vy(o) € L°°(Q)

Wy — Ya Yp — W
va(0))(z,t) = [ ——2 ) (z,t) and  (vp(0))(x,t :<7“) x,t).
0 = (2 ) @) and (oot = (L2
Because 11 — w,, is a differentiable mapping from Ry to L>°(Q), the functions v,
vp map (0, 1] differentiably into L>°(Q). We derive a bound for the function v,
the proof of boundedness for v, is completely analogous.
First, we estimate the derivative of v, with respect to o:

1 ’

||v;(g)||Lm(Q) Lyazw;uu < H;ya
(w(r,u, - ya) L>(Q) Wop — Ya

Wy — Ya o /

(0

=

W,

L>=(Q) H Wop — Ya
1

L>(Q) VIH

L>(Q)

Won = Yallpee(@) I Won = Ya

IN

Ya \/ L o n o w. M
Wop — Ya L(Q) €2 (wou - ya)2 (yb - wau)2 7H Q) Vv o
A Ve,

p YallL=(@)

o
—— < ||vg oo
., T < el
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1
by Lemma 6.5. With the identity v,(0) = v(1) — [v (v) dy we find by (40)

1

1
’ \/50
a(lie@) < laMlimort | [ | <1+ [ E2 @iy
(o2 Loo(Q) o

Now we use the Gronwall Lemma to conclude

w, — Y _
(41) lva (@)l (@) = || ——= <oV,
Wor = YallLe(q)
In an analogous manner, we get the estimate
Yo — _
(42) los(o) @) = || =0 <oV,
Yo o llLe(Q)

Next, we notice the following auxiliary result: For all positive numbers ¢, a1, ao,

bl, bQ. it holds
c+ay + as ai as

43 — <14 —4+ —.
( ) c+ b1 + bg b1 bg

To verify this, we discuss three cases. If a1 + as < as + ba, then the left-hand
side is less or equal than one so that the inequality is true.

If a4 > by and as > by, then we have

C—|—(11+a2_ a1 — by as — by 1+_+_
C+b1+b2 C+b1+b2 C+b1+b2 b1 b2
If a1 + as > by + by and ay > by but as < by, then Cfb;ﬁ@ is negative, hence
c+ai + as ai — by
= S L I
C—|—b1—|—b2 - C—|—b1+bg b b1 bg
The case a; < by but as > by is analogous. Now we can proceed to estimate
d(op) .. . '
‘ o || =) For fixed (z,t) € Q, we distinguish between two cases:
(i) (d(op))(z,t) < (d(p))(z,t). Then (ig&’?) (z,t) <1 is satisfied.

t
(it) If (¢p(op))(x,t) > (¢(1))(x,t), then by combining (43), (42), and (41) we can

estimate

T vt S
+

o(n)
\/ R T E e
Wy = Ya)? (yp — wp)?
\/U (’w(rp, - ya)2 - \/U (yb - ’LUo';L)2 > (x7t)

e R L

|
|
_< S

S 1+20_1/2 \/_Cd, §301/2—\/_c¢7

1 w
Won—va) T o—won)?

(

IN

1
1+
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where we used cg > 1, so that 1/2— \/504, < 0, and hence it holds ol/2=V2¢ S 1 for
all ¢y. Clearly (i) and (ii) imply Hq:fa;) Lo (q) < max{1,30'/2~V2¢}. By ¢ < 1,
¢y > 1, we see that the maximum is 301/2=V2es, U

Lemma 6.7. (Lipschitz-Condition) For all0 < 6 < 1 and all w, w € B, (w,,0\/t),
the following Lipschitz condition holds:

2\/§C¢
1 0) i

Proof. The main idea of the proof is analogous to the proof of Lemma 5.5 in [18]
for unilateral constraints. The difficulty here is the more complicated structure of
¢(p), what results in a more technical proof. For convenience of the reader, we
perform it here in detail.

By Lemma 6.3 we obtain

(44) (18w H (w; 1)~ (9w H (w5 1) — O H (105 1)) (w — )| < lw — @]

10w H (w; 1)~ (0w H (w; ) — 9o H (105 1)) (w — ) |
< collp(p) " (OwH (w; 1) — O H (w5 1)) (w — ) || oo ()

\wml( bt ) -

(w—=9a)>  (Bp—w)? (0—y)? (yp—W)?

:C¢

L>(d

since the constant parts of 0, H(w; ) are compensated by the constant parts of
OwH (05 1), cf. the definition of 9, H (w; 1) in (36). By Lemma 6.4, we get w—y, >
(1—-0)(wy — ya) and yp, —w > (1 — 0)(y» — wy). The same holds for w. Because
the Lipschitz constant of 272 for x > a > 0 is 2a~2, we can estimate

10 H (w3 1)~ (D H (w3 1)~ H (15 1)) (10 — )

1 2 2 DE
<ot (gt + T g —ary) @ o

_ V2 H H 2 — )2

= 0255 | (s * s =) 4 P
\/§C¢ H 1Y — 2

< 1= 0) || (1) (wy — ya)? + S(10)3(yy — w,,)° L) [|lw [

-k
L>(Q) * H d()2 (o — wy)?

\/iCq& H —bl?
< 1-0)3 <H B3 (wy — ya)? Lw(Q)) [lw Il

We show that ¢(u)3(£u—ya)3 and (d)(“)S(Zb_w“)g are essentially bounded by 1/,/1.
First, we find

3
O (s — ya)® = <¢£wm—%v+“@%‘%y+”w“_wy>

(W — ya)? (Yo — wy)?

vV
2
.QJ
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I TR 3/2
From that we get H PMECTETRE HLOC(Q) < p/p’'* =1/\/p. The same holds for the
term containing y,. Altogether, this yields the Lipschitz condition

(45)
00 1) O -0 H 0 ) =) < 2

~ 112 o
an_wnw k=12, ..

Lemma 6.8. Let ||w® — wy, ||, < 0/fo with po >0, 0 < 0 < 1/32c, and let be o

1/26¢
given by (%99':_11) < 0 < 1. Then the iterates of Algorithm 1 obey

||wk = Wy H/J«k+1 < 9\/ Hr+1 = evﬂook/Q'

Proof. We proceed by induction. Assume that ||w* —w,,, || < 6,/7 holds for some
k € NU{0}. It holds

A

k k
”w — Wy ||H7€+1 = Hw - w/tk||uk+1 + kuk — Wpypy ||Mk+1

Mk ,
/ w, dr
Hk+1

”wk — Wy, ||ﬂk+1 < 30—1/2_\/50(#”101C — Wy, ”,uk < 301/2_\/5%0\/ M-

IN

Hwk - w#k”#k+1 +

MHEk+1

By Lemma 6.3, the first item can be estimated as

The term containing the integral can be estimated in the following way: Setting

Wyl =0T, 0 = ”’“%, we obtain

1223 s

Pk , B , B o
/ w. dr < / (3 (Mk+1/7)1/2 \/564;) HwT”T dr < 3;“']14.21 V2¢, / 7_—(1/2—\/§c¢) \/\;F¢ dr
ME+1 Hr+1 Ih41 e
Bk HEk
\/§C¢
- — T
= 3V2eom /Y / TR G — 33y PV N
THE ¢ Ok

k+1
_ 30_1/27\/504) (1 _ O,\/Ec¢) ‘ullc/2

_ 3‘LL1/2*\/§C¢ (uf6¢ - 0_\/§C¢M;€/§C¢) _ 301/2—\/50(15#]16/27\/564) (1 o Uﬂcd)) ‘LL];/EC¢

)

where we used Lemma 6.6 and Lemma, 6.5.
Summarizing up, we obtain

< 301/27‘/50"’9#1/2 + 30/ V2e (1 — 0‘/5%) ,u,lc/z

”wk — Wppga ||ltk+1 =
_30_1/2 \/_C¢(9_|_1 \/_Cd))
(46) = 30 V2es (9 +1- \/_Cd’) VHk+15

what gives us the constant ¢(6,0,c4) := 30~ Vae (9 +1-— \/_Cd))

Now we choose o such that ¢(6, 0, cg) < 460 holds. Later, we need this result to
perform one Newton step in direction w**!, where we use, that the initial value
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wk for that step is in a 40-ball around the associated w,,, on the central path. The
desired inequality is equivalent with

0+1—0V? < %90‘/5%.
Resolving for 0‘/500’, we obtain

0+1
30+1

< gV

and hence
g1\ "V
30+1
Now we have found a suitable 0 < o < 1, such that 307 V2 (g + 1 — V2 ) < 46.

Since the right-hand side is less then one, hence we can find o < 1 satisfying this
inequality. For our choice of o, the result (46) reads

(47) ”wk — Wy Huk+1 < 49\/ Hk+1-

Next, we perform one Newton-step in the direction wy,_,. With ¢y > 1 in mind,
we can choose e.g. 6 = 1/32c4, < 1/32 , where we have 46 < 1/8. In the ball
By (W, »40/1iky 1) we obtain by Lemma 6.7 the Lipschitz-constant

2\/§C¢
(1—40)3/fk+1
By our assumption on w” and by our choice of o and 6, we have w* € By (wyy 40 /ligs1) C
By (wyyyy,2/w), cf.(47). Now the assumptions of the Newton-Mysovskii-Theorem
are fulfilled, cf. Theorem 1.2 in [4]. (We have an "affine invariant" Lipschitz con-
stant w and w" is close to wy,,,, i.e. w* € By, (w,,,,,2/w).) The theorem
provides now

Wik 2 Ve,
- wuk+1HMk+1 < EHw - wuk+1||uk+1 < W

By our choice of o, we have by (47)

Hwarl ||wk - w/ik+1||;2tk+1'

||wk = Wy H/21,k+1 < 1692Mk+17
and finally, we get the estimate
161/2c,,0? 16v/2c40>
k+1 < ¢ — —¢
Hw ka+1||Mk+1 = (1 — 49)3\/m:u/€+1 (1 — 49)3 vV HE+1-
ForQ:ﬁgg%wehave
16v/2¢y
16v/2¢46? - 3272
(1—460)3 (1_L)3
8cy
V2 (8ep -1\ _ 1
64cy \ 8cy T 32

Altogether we have
”warl — Wpgeyq ||#k+1 < 9\/ HEk+1
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O

9+1 1/20¢
for 6 =1/32¢4 and for all o > (%9+1>

Theorem 6.9. Assume that ||w®—w,, ., < 0\/fo, where) <o <1and0 <6 <1
are given by Lemma 6.8. Then the iterates w* of Algorithm 1 converge linearly
towards the solution w of problem (P): There is some ¢ > 0, such that

[wk — | e gy < co™?, k=0,1,2,...

Proof. We have

[ =@l < 0" = wpllLe(@) + W — @l Lo (@)
3 _
(48) < ﬁ\lwk = Wy [l + w0y, — @l (@)

where the constant \/LE results from the transition from the L°°-norm to the

p-norm, cf. Lemma 6.1. The first item can be estimated by Lemma 6.8 as

Hwk - w#k“#k < 9\/#1@ = 0\/“0019/2.
The second item of (48) can be estimated by the length of a segment of the central
path: Theorem 5.10 yields ||w,, — 0| r=(Q) < Cpath\/Hk = cpath‘/uoak/? Together
with (48), we arrive at

3

w* — @ pe(q) < (\/E9 + %m) Viook!? =: co/?,

7. NUMERICAL EXAMPLES

7.1. Discretization of the optimality system. In Section 5.1, we have intro-
duced the optimality system (32)—(35) for our problem with state equation (2).
In view of our test examples, we will use now the extended form (5) of the state
equation, for which the theory works as well, ¢f. Remark 3.5. In (35) we write

Nau = 6u+Z—y and 1y, = yb_gu_y and we have to solve the optimality system
Yy —V-(AVy)+cy = u+f nQ,
(49) Ohy+ay = g on Y,
y(0) = o in Q,
—pt = V- (AVp) +cop = _au-'rZ_ya + yb—gu—y in Q,
(50) Owp+ap = 0 on X,
p(T) = y(T)—ya in Q,
(51) Ku—+p— el + e = 0 a.e. in Q.

EU+Y —Ya Yp—EU—Y
Our test examples are defined in one-dimensional domains 2 = (a,b). Let 0 =
tog <ty < ...<t, =T be a partion of [0,T], and denote by d; = t; — tx—1 the time
steps. Define yx = y(-,tx), ux = u(, tx), pr = (- tk), 96 = 90 tk),(Ya)k = Ya (- k),
(yo)ke = Yo (-, tk)s (Wa)r = ya(-,tx), K =0,1,...,n. Using an implicit Euler scheme for
discretizing (49) and (50) in time, we have to solve a sequence of elliptic problems

1+ 0kt1c0 1
i =k + kg + frans
Ok+1 Ok+1

(52) OnYk+1 + QY1 =  Ght1

=V (AVygi1) +
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for k =0,...,n — 1, starting at
y('7 O) = Yo-
To get a fully discrete system, we use linear finite elements to discretize the elliptic
subproblems. Let a = 29 < 21 < ... < x, = b be a partition of (a,b) = Q C R with
hi = xi41 —x;, i =0,...,n — 1. By using standard hat functions with ¢;(x;) = d;;,
i,7 € I, where I C N is the set of indices of the nodes z;, we can identify the
coefficients of the FEM approximation of a function by the values of the function f
in the nodes, f(z) ~ Y ,.; f(x:)@i(z). In all what follows, we identify the functions
f, y, u, etc. by their coefficent vectors (f(z;)), (y(x;)), (u(x;)) and denote them
by the same symbols, i.e., we will write f instead (f(z;)) etc.
By the stiffness matrix

K = (K;j), Ki Z/Q(aijij)'(v%)dwy
the mass matrices

1+ dpi1c
M1 = (Mij)rr1,  Mijrs :/ LS
Q

0; d,
Sopr Y

1\_/[ = (Mij), Mij = ‘/QL,D]‘QDZ' dl‘,
and the matrices associated with the boundary T,

Q=(Qij), Qij= /chj% ds,

G=(G), G; :/9%‘ ds,
r
the FEM representation of the elliptic subproblems is given by
1 - _
(53) (K+Mgp1 + Q)yptr = KMyk + M(uk+1 + fit1) + Grgrs
+

k=0,1,...,n — 1. Analogously, the adjoint equation is discretized by

_ 1%
KM = M{—/——F——
(K + M}, + Q)ps <yk + eup — (ya)k)

_ n 1 -
54 —-M|— |+ —M
>4 ((yb)k — Yk — €uk) 5y Pk

for k =n —1,...,0 with terminal condition

Pn = Yn — Yd-

H Iz
yrteur—(Ya)r and (Yb) ), — Yk —cuK are defined by

The vectors

(e = ). = v
yr+euk — Wa)k /i (k)i +e(ur)i — (va)r )i

and
(=)~ o
(Yo)k — Y — €ug i ((yb)k)i - (yk:)i - E(uk)i,
for ¢ = 0,...,n, respectively. These equations are coupled through the discrete
version of the gradient equation
(55) Kug + pr + i K =0,

(Yb)k — yr — up - Yk +eur — (Ya)k
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for k =0,...,n.
We arrange the coefficient vectors as follows:
z = [yg7y?’ A "yg’ug-‘?u{’ A "ugﬂpg;?p?’ A apZ;]T'
The identities y! = y(0) and p. = yI — y?" are implemented by identity matrices
in the discrete optimality system. We write now the optimality conditions as a
nonlinear system

F(zyp) =224 ¥(z)+ D=0,

where = is a large, sparse matrix, essentially built of blocks K + My + Q on the
diagonal and M on the subdiagonal. ¥ is a function that covers the nonlinearity
and @ is a vector that contains the constant parts of the equations (53)—(55).

One difficulty in the Algorithm 1 is to find a suitable initial function z°. The
following steps provide a feasible initial function that can be expected sufficiently
close to z,,. Moreover, the time and space discretizations can be adapted during
the computations.

Algorithm 2. (Computation of z° on an adapted grid)

(i) Define equidistant initial partitions To = {to,to + 0¢, ..., T} of [0,T] and
Qo = {a = zg, 20 + hy...,zp, = b} of Q = (a,b), where §; and h are the
fized initial stepsizes in time and space, respectively.

(ii) Choose 2o = (y&,ul’,pI)T feasible, i.e. yo < yo + eug < yp, while py can
be taken arbitrarily.

(iii) Assemble the matrices K, My, M, Q, and the vector G.
(iv) Choose g > 0. Compute a solution of

F(z;p10) =0

by the Newton Method.

(v) Refine the space and time grids by suitable methods.

(vi) Reassemble all matrices and compose the associated system matriz =. In-
terpolate z onto the new grids.

Remark 7.1. After step (iv) of Algorithm 2, we have determined a solution of
a discrete Newton system of PDEs. In principle, this solution might be taken as
the starting value for Algorithm 1. However, our numerical experience showed that
the discretization error may dominate the entire error, so that Algorithm 1 fails.
Therefore, an adaptive refinement of the grid turned out to be necessary. This step
is the main aim of Algorithm 2.

The spatial grids may change between the different time steps. After Algorithm
2 is finished, the joint refinement of all spatial grids is taken as the fixed spatial
grid for Algorithm 1. The discretized version of Algorithm 1 is started with 2°.
For all computations, we used Matlab 7.1.0 R14 on a Pentium IV machine with
1GB memory. The linear subproblems are solved by direct methods. For refinig
the meshes in Algorithm 2, we used for the time refinement odelbs with the setting
RelTol = 1le-3, MaxOrder — 1, and BDF—on. For the grid refinement in space, we
applied an error indicator function similar to the one described in [12]. The spatial
grid is fixed in all time steps.
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7.2. Examples.
Example 1. We tested our method by the problem

. 1 K
min J(y, u) := 3 |y(T) — yall72(q) + 5”“”%2(@)

subject to
y—Ay = u in Q,
Opy+10y = 0 on %,
y(0) = wo  inQ,

and to the mized control-state constraints
Y+ eu > yq = max{—100(¢t(t — 1) + z(z — 1)) — 49.0,0.5}  a.e. in Q.

We take Q = (0,1) C R, T = 1. Further, let there be given yq = 0 and yo = sin (7z).
Obuviously, this problem fits in our general setting with o = 10.

Uncontrolled solutions of the heat equation are known to decay exponentially in
time. The constraints are chosen to form an obstacle for this decay such that a con-
trol action is needed to fulfil them. In this way, a reasonable active set is expected.
Although we do not know the exact solution of this problem, the computations con-
firmed this behaviour.

In our examples, there is mo upper bound yy, but it is clear that our method
covers the one-sided case as well, cf. our comments before Lemma 5.2. In contrast
to the next example, here the exact optimal control u and the associated functions
Y, p and 1, are unknown.

The initial vector for Algorithm 2 was 2° with all entries equal to zero and the
initial stepsizes were h = 0.01 and §; = 0.005. In Algorithm 1, we choose o = 0.8,
po = 1073, and eps = 107°. Figures 2 and 3 show the computed optimal solutions
Y,p,uandn, = m for the reqularized problem with e = 1073 and k = 1073.

In contrast to the next example, we only provide the figures of the final result,
since the distance to the optimal solution cannot be estimated. In this example, we
stopped Algorithm 2 after two outer iteration to refine the time and space grids.
The interior-point algorithm needed up to 40 inner iterations for decreasing (.

(a) optimal control (b) optimal state

FiGURE 2. Solutions to Example 1, control and state.
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(a) adjoint state (b) Lagrange multiplier

F1GURE 3. Solutions to Example 1, adjoint and approximation on
the multiplier.

Example 2. Here, we consider the slightly modified problem

. 1 K
win J (9, ) 1= 3 19(T) — vl + 5 gy + [ vowdodt,
Q

subject to
ye—Ay = ut+f inQ,
(56) y = 0 on X,
y(0) = o in €,

and to the mized control-state constraints
Yo <y+e(u+ f) a.e. in Q.

The last term in the objective function was added to construct an example with
explicitly known optimal solution. This term does not change our theory. We
simply have to add its derivative yg to the right hand side of the adjoint equation.

We construct an optimal solution which fulfills the optimality conditions (49)
(51) for the unregularized problem, i.e., for e = 0.

Remark 7.2. In Section 5, it was shown that the Lavrentiev-regularization is es-
sential for our theory. We consider here an unregularized problem, because our aim
is to construct an example with a reqular Borel measure as Lagrange multiplier.
In Section 4 we have shown that for € > 0 the Lagrange multipliers are function
from L?, only for e = 0 we will get measures. On the other hand, in some recent
papers, e.g. in [21], [14], [18], Section 7, and [20], the convergence of the optimal
control u. of the reqularized problem to the optimal control u of the unreqularized
one 1s shown with order \/ji. For sufficiently small €, e.g. € < 10=%, we can expect
that the regularization error can be neglected in comparison with the error ||u,, — ul|
measured in the L>-norm. Indeed, this is our numerical observation.
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The integral ff Yoy dxdt in the objective function leads to the adjoint equation
Q

—pe+Ap = yo— ;5 nQ,
p = 0 on X,
p(T) = y(T)—ya inQ

instead of (50).

Construction of the optimal solution. We choose Q = (0,7), T = 1, and
define the optimal state by y(z,t) := e 'sin (z). Together with y(z,0) = sin (z) and
§(z,T) = e Lsin (x) we obtain from (56) and y, — Ay = 0 the condition u+ f = 0.

From the gradient equation (51) and ¢ = 0 we therefore get [ = %p. Next,
we construct the state constraint such that iy touches the bound vy, only on a set
(t1,t2) % {%} This set has measure zero, so that we construct a Lagrange multiplier
as a reqular Borel measure. We take t;1 = 0.3 and ty = 0.6. The bound y, is fized

by ya(z,t) = n(t)0(z) with

1 .t—t —t1 ¢
§t07t11 +e IH, t€(0,t1),

’I](t) = eitv te (t15t2)7

—to t—1 11—t
e 2t2771+§17t27 té(tg,l),

and

3 _ X 7T2;
o) {W 0.5, z€(0,7/5)

25— %’ z € ("/2,m).
The adjoint state is constructed by the ansatz p = ¢(t)v(x). To this aim, let
¢(t) - {_Sin2(t2zt1 (t_tl))’ te (t17t2)7

0 else.

The derivative of ¢ is given by the continuous function

i {—t22_”t1cos((tz%tl)(t—tl))sin(ﬁ(t—tl)), t € (t1,t2)

¢ (t)

0 else.
Moreover, we introduce the continuous piecewise linear function
2y r€l0,7]
’U(LL') = 5 2 s
2—-zx welf,m.

The second derivative of v(z) with respect to x is a multiple of the Dirac measure
concentrated at 7/2:

Vg = —;53.
The adjoint equation gives
—Pt = DPax = —HFTYQ,
so we can set
b= (1) = —6(1) 253 >0

and

’

yo = —¢ (tv().
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Obviously, p and y — y, fulfill the complementary slackness conditions

[ = wdntz. =0
Q

Y —1Yq > 0ae. in Q, > 0.
Having the exact optimal solutions, we are able to confirm the convergence rates
for u, as y — 0. We fix k = 1072, e =105, 0 = 0.8, 1o = 1073, and eps = 1075.
Figures 4 and 5 show the numerical solutions.

(a) optimal control (b) optimal state

FIGURE 4. Solutions to Example 2, control and state.

1500 -,

~_
0

X t

(a) adjoint state (b) Lagrange multiplier

FIGURE 5. Solutions to Example 2, adjoint and approximation on
the multiplier.

With the given exact solutions of the unregularized problem and our choice of
€, we observe linear convergence in u and y. Notice that ¢ is very small compared
with the expected discretization error and also compared with p. Therefore, it is
reasonable to consider the distance to the exact solution at ¢ = 0 rather than to
the one corresponding to ¢ = 107°. Figure 6(c) shows the value of the objective
function J,.
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2

10

(a) relative error |lu, — @||/||@| (b) relative error ||y, — ¥l|/[|7]]

(c) value of the objective function J,

FIGURE 6. Convergence for ;4 — 10~%. p-axis scaled logarithmically.

In Table 1, we present the errors of the solutions and the value of the objective
function for Example 2 for selected values of p.

|y = 0080 | e — @l /@l | llp — @ll /|51 | I (s s )
8.072 2.2054 4.333271 4.333271 7.3130
4.3980~3 1.74672 2.97382 2.97382 6.1299
7.37874 3.841572 6.623173 6.623473 6.1211
3.02234 2.09362 4.068473 4.068573 6.1204
9.9035° 1.33542 3.1801°3 3.17993 6.1202

TaBLE 1. Relative errors in y, u, and p , and values of J(y,u)
depending on p.
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