
An interior point method for a paraboli optimalontrol problem with regularized pointwise stateonstraints(Preprint-Version)U. Prüfert and Fredi TröltzshAbstrat A primal-dual interior point method for state-onstrained parabolioptimal ontrol problems is onsidered. By a Lavrentiev type regularization, thestate onstraints are transformed to mixed ontrol-state onstraints whih, after asimple transformation, an be handled as ontrol onstraints. Existene and on-vergene of the entral path are shown. Moreover, the onvergene of a short stepinterior point algorithm is proven in a funtion spae setting. The theoretial prop-erties of the algorithm are on�rmed by numerial examples.Keywords Paraboli optimal ontrol, pointwise state onstraints, Lavrentievtype regularization, interior point method.
AMS-Subjlass 49M15, 49M371. IntrodutionIn this paper, we extend our investigations on interior point methods for elliptistate-onstrained optimal ontrol problems in [18℄ and [13℄ to the paraboli ase.The main di�ulty of the numerial analysis of interior point methods for suhproblems is the lak of regularity of Lagrange multipliers assoiated with the stateonstraints. Therefore, it is helpful to improve the properties of the multipliers bysuitable regularization tehniques.For instane, this task an be aomplished by disretization and subsequentappliation of interior point methods. We mention the work by Bergounioux et al.[1℄, who arefully ompare the performane of primal-dual ative set strategies andinterior point methods for ellipti problems, Grund and Rösh [5℄, who solve suhproblems with maximum norm funtional, and Maurer and Mittelmann [16℄, whohandle several state-onstrained ellipti ontrol problems by standard interior pointodes.To onsider the interior point algorithm in funtion spae, we suggested in [18℄,[13℄ a Lavrentiev type regularization. The Lavrentiev regularization of ellipti prob-lems was introdued in [14℄. This method ensures regular Lagrange multipliersand preserves, in some sense, the struture of a state-onstrained ontrol prob-lem. Moreover, ompared with a diret appliation of interior point methods tostate-onstrained problems, the regularization improves the performane of the al-gorithm, [13℄.In [26, 27℄, primal-dual interior point methods are analyzed for ODE problemsin an in�nite dimensional funtion spae setting, and their omputational realiza-tion by inexat pathfollowing methods has been suggested. In [18℄, this methodis extended to the optimal ontrol of linear ellipti PDEs with regularized point-wise state onstraints, where the analysis is performed in L∞-spaes. Nonlinearequations are onsidered in the reent paper [24℄. In partiular, the onvergene1



2of primal-dual interior point methods is shown in Lp-spaes with p < ∞ for theontrol-onstrained ase.Today, there exist also several papers on the numerial analysis of interior pointmethods for paraboli optimal ontrol problems. For instane, trust-region interiorpoint tehniques were onsidered by M. Ulbrih, S. Ulbrih, and Heinkenshloss[25℄ for the optimal ontrol of semilinear paraboli equations in a funtion spaesetting. A�ne-saling interior-point methods are presented for semilinear paraboliboundary ontrol in [23℄. Sahs and Leibfritz [10, 9, 8℄ onsidered interior pointmethods in the ontext of SQP-methods for paraboli optimization problems.In our paper, we are able to prove the onvergene of a oneptual primal interiorpoint method in funtion spae. We on�ne ourselves to a problem with linearequation and an objetive funtional with observation at the �nal time. This seemsto be more hallenging in the analysis than funtionals of traking type.The analysis is very similar to the one for the ellipti ase that was disussedin [18℄. Therefore, we onentrate on those parts of the proofs that need essentialmodi�ations for paraboli problems. For parts of the theory that are ompletelyanalogous to ellipti problems, we refer to [18℄.In the paraboli ase, the presene of pointwise state onstraints auses strongerrestritions on the dimension of the spatial domain than for ellipti equations. Wedo not impose ontrol onstraints. Therefore, the natural ontrol spae is of type L2.To derive �rst-order neessary optimality onditions of Karush-Kuhn-Tuker type,the state funtions should be ontinuous. This restrits the theory to distributedproblems in one-dimensional domains.This obstale is ompletely overome by our Lavrentiev regularization, whih isruial for the analysis. After regularization, we obtain Lagrange multipliers forany dimension of the domain. Moreover, we do not need onstraint-quali�ations.This remarkable advantage of our regularization method is worth mentioning.The paper is organized as follows: After de�ning our problem and introduingour main assumptions in Setion 2, Setion 3 is devoted to known results onerningthe paraboli equation. In partiular, we regard the properties of the ontrol-to-state mapping.In Setion 4, we introdue the Lavrentiev type regularization. We motivatewhy the Lagrange multipliers are regular and show that the optimal ontrol of theregularized problem onverges towards the optimal ontrol of the original problem.Setion 5 is devoted to existene and onvergene of the entral path de�ned by theinterior point method. In Setion 6, we disuss the onvergene of a simple interiorpoint algorithm in funtion spae and �nally, in Setion 7, we on�rm our theoryby some numerial examples. 2. Problem settingWe onsider the optimal ontrol problem(1) min J(y, u) =
1

2
‖y(T ) − yd‖2

Ω +
κ

2
‖u‖2

Qsubjet to the paraboli initial boundary value problem(2) yt −∇ · (A∇y) + c0y = u in Q,
∂ny + αy = 0 in Σ,

y(0) = 0 in Ω,



3and to the pointwise state onstraints(3) ya(x, t) ≤ y(x, t) ≤ yb(x, t) for all (x, t) ∈ Q.In this setting, Ω ⊂ R
N , N ≥ 1, is a bounded domain with C1,1-boundary Γ,and (0, T ) is a �xed time interval. We de�ne Q := Ω × (0, T ) and Σ := Γ × (0, T ).

A = (aij(x)), i, j = 1, ..., N , is a symmetri matrix with aij ∈ C1,γ(Ω), γ ∈ (0, 1).It is assumed to satisfy the following ondition of uniform elliptiity: There isan m > 0 suh that
λ⊤A(x)λ ≥ m|λ|2 for all λ ∈ R

N and all x ∈ Ω̄.Moreover, funtions c0 ∈ L∞(Q), yd ∈ L∞(Ω), and ya, yb from C(Q̄) are given thatsatisfy ya(x, t) < yb(x, t) for all (x, t) ∈ Q̄.By the ontinuity of ya and yb, there is some cQ > 0, suh that it holds(4) yb(x, t) − ya(x, t) ≥ cQ ∀(x, t) ∈ C̄.Notations: By ‖ · ‖Lp(M), M ∈ {Q, Σ, Ω}, we denote the standard norm of Lp(M).By (·, ·)L2(M) the inner produt of L2(M) is denoted. In L2(Q), the norm and theinner produt are written without subsript, i.e. ‖ · ‖ := ‖ · ‖L2(Q) and (·, ·) =

(·, ·)L2(Q) is the assoiated inner produt of L2(Q). We use ‖B‖V →W for the normof a linear ontinuous operator B : V → W . If V = W = L2(Q) we just write ‖B‖.Throughout the paper, c is a generi positive onstant. To shorten the notation,we write e.g. B + µ
w−ya

instead of B + µ
w−ya

I, although B is an operator and µ
w−yais a funtion. By ∂n we denote the onormal derivative with respet to A, where nis the outward normal diretion on Γ.3. Some fats about the paraboli equationIn this setion, we reall some known fats about the paraboli equation de�nedin (2). For the proof, we refer to [2℄ and [7℄, or to the survey in [22℄.By W (0, T ), we denote the Hilbert spae of funtions y ∈ L2(0, T ; V ) with timederivative y′ in L2(0, T ; V ∗), endowed with its standard norm, f. [11℄. For thenotion of a weak solution to (2) we refer to [7℄ or [11℄.Theorem 3.1. The ontrol-to-state mapping u 7→ y assoiated with equation (2)is linear and ontinuous from L2(Q) to W (0, T ).With the linearity of the paraboli pde, we an write y = GQu, where theontrol-to-state mapping GQ : L2(Q) → W (0, T ) is ontinuous in view of Theorem3.1.The mapping u 7→ y(T ), onsidered from L2(Q) to L2(Ω), the �observation� of

y at T , is denoted by S. De�ne ET : W (0, T ) → L2(Ω) by ET : y 7→ y(T ). Then Sis given by S = ET GQ.If we onsider GQ with range in L2(Q), then we denote this operator by G, i.e.
G = EGQ, where E is the embedding operator from W (0, T ) to L2(Q).Corollary 3.2. The mapping S : u 7→ y(T ) is ontinuous from L2(Q) to L2(Ω).Summarizing up, we have introdued the mappings

GQ : L2(Q) → W (0, T ),

G : L2(Q) → L2(Q),

S : L2(Q) → L2(Ω).



4Remark 3.3. Although we have �xed the spaes of L2-type, where G and S arede�ned, we shall onsider them also in other spaes without hanging their notation,as in the next theorem.Theorem 3.4. Let Ω ⊂ R
N be a bounded C1,1-domain and assume f ∈ Lr(Q) with

r > N/2 + 1, g ∈ Ls(Σ) for s > N + 1 and y0 ∈ C(Ω̄). Then the weak solution y of
yt −∇(A∇y) + c0y = f in Q,

∂ny + αy = g on Σ,
y(0) = y0 in Ωbelongs to C(Q̄) and there is a onstant c independent of u, suh that

‖y‖C(Q̄) ≤ c
(

‖f‖Lr(Q) + ‖g‖Ls(Σ) + ‖y0‖C(Ω̄)

)

.Proof. We refer to [2℄, or [19℄, f. also [22℄, Lemma 7.10. �For a spatial dimension of N = 2, we need r > 2 and for N = 3 we need r > 5/2to satisfy the assumptions.Remark 3.5. We present the theory for homogeneous boundary data and zeroinitial value. Problems with �xed inhomogeneous data in the paraboli equation,(5) yt −∇ · (A∇y) + c0y = u + f in Q,
∂ny + αy = g in Σ,

y(0) = y0 in Ω,where f ∈ Lr(Q), r > N/2 + 1, g ∈ Ls(Σ), s > N + 1, and y0 ∈ C(Ω̄) are given,an be easily transformed to a problem of type (1)�(3). One has to separate the�xed part of y assoiated with (f, g, y0) and to subtrat this part from yd.4. Mixed ontrol-state onstraintsIn this setion, we onsider the regularized optimal ontrol problem(P) min J(y, u) =
1

2
‖y(T ) − yd‖2

Ω +
κ

2
‖u‖2

Qsubjet to
yt −∇ · (A∇y) + c0 = u in Q,

∂ny + αy = 0 on Σ,
y(0) = 0 in Ω,

(6)and to the mixed (ε-regularized) ontrol-state onstraints(7) ya ≤ y + εu ≤ yb a.e. in Q.We are able to show that the optimal ontrol uε of this problem tends in L2(Q)to the solution ū of the original problem, provided that a Slater type onditionis satis�ed for the original one. The method of proof is analogous to the one inHintermüller et al. [6℄. We do not prove this result, sine we aim at onentratingon the interior point method for problem (P) rather than to disuss the relation tothe unregularized problem (1)�(3). Following [14℄, we transform the mixed ontrol-state onstraints into ontrol onstraints. By the operator G, introdued in Setion3, we an write
y + εu = Gu + εu = (G + ε I)u.



5The funtion w := y + εu is onsidered as a new auxiliary ontrol. Then we have
u = D w, where D : L2(Q) → L2(Q) is de�ned by

D = (G + ε I)−1.(8)
D is well de�ned, as the next result shows:Lemma 4.1. For all ε 6= 0, the operator D exists and is ontinuous in L2(Q).Proof. First we show that the kernel of G + εI is trivial. To see this, onsider theequation

Gu + εu = 0.This is equivalent to u = G(−ε−1u). By the de�nition of G, u solves the system
ut − ∆u + c0u = −1

εu in Q,
∂nu + αu = 0 on Σ,

u(0) = 0 in Ω.By taking (−1/ε)u to the other side of the equation we see that u solves a homo-geneous initial-boundary value problem that has only the trivial solution.It remains to show that εI + G is surjetive. Then the Banah theorem on theinverse operator ensures the ontinuity of D = (εI +G)−1. Let w ∈ L2(Q) be givenarbitrarily and onsider the equation
εu + Gu = w.To solve it, we onsider the equation

yt − ∆y + c0y = 1
ε (w − y) in Q,

∂ny + αy = 0 on Σ,
y(0) = 0 in Ω.

(9)Taking −1
εy to the other side, we see that this equation has a unique solution

y ∈ W (0, T ). Now we de�ne(10) u :=
1

ε
(w − y).Then y = Gu holds and hene

u =
1

ε
(w − Gu).Obviously, this u solves the equation εu + Gu = w and we have shown the surje-tivity. �4.1. Regular Lagrange multipliers. By the tehnique used in [13℄ for an elliptiproblem, we will motivate the existene of regular multipliers. We do not diretlyneed this result for our onvergene analysis. However, it shows how the regu-larization helps to onstrut a problem with better properties. In partiular, thisexplains why our numerial method does not have to deal with measures as multi-pliers. First of all, we transform problem (P) with mixed ontrol-state onstraints(7) in a ontrol-onstrained problem with new ontrol w := D−1u. With S and D,we transform problem (P) to one depending on the ontrol w as(11) min F (w) =

1

2
‖SDw − yd‖2

L2(Ω) +
κ

2
‖Dw‖2subjet to(12) ya ≤ w ≤ yb a.e. in Q.



6 This transformation of our ontrol problem (P) will be used for the analysis ofthe interior point algorithm, while all omputations are performed with the originalform of (P).The funtional F is ontinuously Fréhet-di�erentiable on L2(Q). Its Fréhetderivative is represented by
F ′(w)v = ((SD)∗(SDw − yd), v) + κ (D∗Dw, v) .We an identify it with the funtion

g := (SD)∗(SDw − yd) + κD∗Dw ∈ L2(Q),the Riesz representation of the derivative. Using the same arguments as in [13, 14℄,we de�ne Lagrange multipliers ηa and ηb ∈ L2(Q) by
ηa(x, t) = g(x, t)+,

ηb(x, t) = g(x, t)−,so that g = g+ − g− = ηa − ηb.Remark 4.2. In all what follows, a bar as in ū, ȳ, or w̄ et. indiates optimality.The optimal solution w̄ ful�lls, together with ηa and ηb, the following neessaryand (by onvexity) su�ient optimality onditions:
S∗(SDw̄ − yd) + κDw̄ + (D∗)−1(ηb − ηa) = 0,(13)together with the omplementary onditions

(14) (ηa, w̄ − ya) = 0 , (ηb, yb − w̄) = 0

ηa(x, t) ≥ 0 , ηb(x, t) ≥ 0 a.e. in Q

w̄(x, t) − ya(x, t) ≥ 0 , yb(x, t) − w̄(x, t) ≥ 0 a.e. in Q.Following the same steps as in [15℄, ηa, ηb are veri�ed to be the Lagrange multipliersassoiated with the mixed onstraints (7).4.2. Transformation in terms of PDEs. By D−1 = εI + G we an write (13)in the form
S∗(SDw̄ − yd) + κDw̄ + ε(ηb − ηa) + G∗(ηb − ηa) = 0.(15)Re-substituting Dw̄ = ū, and de�ning an adjoint state p by

p = G∗(ηb − ηa) + S∗(Sū − yd),(16)we obtain the optimality onditions̄
y = Gū,(17)

p + κū = ε(ηa − ηb),(18)together with the omplementarity onditions (14), where we resubstitute w̄ :=
εū + ȳ.The adjoint state p de�ned by (16) is the unique solution of the following adjointequation:

−pt −∇ · (A∇p) + c0p = ηb − ηa in Q,

∂np + αp = 0 on Σ,(19)
p(T ) = ȳ(T ) − yd in Ω.



7The adjoint equation has a unique solution p ∈ W (0, T ). It holds
‖p‖W (0,T ) ≤ cw

(

‖ηb − ηa‖L2(Q) + ‖ȳ(T ) − yd‖L2(Ω)

)with some cw not depending on the given data. This follows from Theorem 3.1after the transformation of time τ := T − t.Remark 4.3. The ase ε = 0 is formally overed by the optimality system (14)�(18), too. Here, possibly, ηa, ηb belong to M(Q̄), the spae of regular Borel mea-sures de�ned at Q̄. Then equation (19) is a paraboli PDE with measures on therighthand-side, whih may even appear in the boundary and terminal onditions,we refer to Casas [2℄. In this ase, our theory does not work, sine the operator Dis unbounded and not de�ned on the whole spae L2(Q).In summary, we have derived the following theorem:Theorem 4.4. For all ε 6= 0, problem (P) has a unique optimal ontrol ūε withassoiated state ȳε. There exist non-negative Lagrange multipliers ηa ∈ L2(Q) and
ηb ∈ L2(Q) and an assoiated adjoint state p ∈ W (0, T ), suh that the optimalitysystem (14)�(18) is satis�ed.The existene of the optimal ontrol follows in partiular from the fat that theequation εu + Gu = ya is solvable for all nonzero ε. Therefore, the admissible setis never empty. Due to the onvexity of the objetive funtional F , the neessaryoptimality onditions are also su�ient for optimality.5. Interior-point method in funtion spaeBy the interior point method, the onstrained problem (11)�(12) is transformedinto a formally unonstrained problem by adding a logarithmi barrier term to theobjetive funtional F . In this setion, we show that the transformed problems aresolvable and that the assoiated entral path exists.In terms of PDE, the problem (P) is onverted to the following one:
min Jµ(y, u) :=

1

2
‖y(T ) − yd‖2

Ω +
κ

2
‖u‖2

Q − µ

∫∫

Q

ln (y + εu − ya) + ln (yb − εu − y) dxdt

subjet to the equation (2).Let us �rst state the assoiated neessary optimality onditions. In a standardway, e.g. by the formal Lagrange-tehnique explained in [22℄, we obtain the adjointequation
−pt −∇ · (A∇p) + c0p = − µ

y+εu−ya
+ µ

yb−εu−y in Q,

∂np + αp = 0 on Σ,
p(T ) = y(T ) − yd in Ω,

(20)
and the gradient equation

p + κu − εµ

y + εu − ya
+

εµ

yb − εu − y
= 0 a.e in Q.(21)The solution (uµ, yµ, pµ), if it exists, is expeted to onverge to the solution ofProblem (P) as µ ↓ 0. We prove the existene of this and the optimality onditions



8by onsidering the penalized version of Problem (11)�(12), i.e.,
min Fµ(w) :=

1

2
‖SDw − yd‖2

Ω +
κ

2
‖Dw‖2

Q − µ

∫∫

Q

ln (w − ya) + ln (yb − w) dx dt,

(Pµ)
where µ > 0 is the path parameter that will tend to zero. This is a formallyunonstrained problem, but the logarithmi barrier term an only be �nite for
w ∈ L2(Q) with ya < w < yb a.e. in Q. Therefore, the admissible set of (Pµ) isopen in some sense. Notie that Fµ(w) is a onvex funtional.To prove the existene of a solution of problem (Pµ), we apply a method that hasbeen introdued in [18℄. It onsiders the minimization of Fµ in a losed subset and,at the same time, �nally permits to show that the solution wµ has some positivedistane to the bounds: We have ya + τ ≤ wµ ≤ yb − τ for some su�iently small
τ > 0 that depends on µ.5.1. Existene. For �xed τ > 0, we onsider the auxiliary problem(Aux) min

ya+τ≤w≤yb−τ
Fµ(w).The admissible set of this problem is losed, and the funtional Fµ is bounded.We de�ne the following admissible sets:

W := {w ∈ L2(Q) | ya ≤ w ≤ yb a.e. in Q},(22)
Wτ := {w ∈ L2(Q) | ya + τ ≤ w ≤ yb − τ a.e. in Q}.(23)Theorem 5.1. For every 0 < τ < cQ/3, cQ de�ned in (4) and for all µ > 0,problem (Aux) has a unique solution wτ,µ. There is a bound c not depending on τand µ suh that it holds ‖wτ,µ‖L∞(Q) ≤ c.Proof. It is lear that Wτ is non-empty, onvex, losed and bounded. Fµ is stritlyonvex and ontinuous on Wτ , and hene weakly lower semiontinuous. Therefore,standard arguments show the existene of a unique solution of (Aux). The uniformboundedness of the solution is an obvious onsequene of the boundedness of Wτ ⊂

W in L∞(Q). �In the ase of one-sided onstraints y + εu ≤ yb or ya ≤ y + εu , Theorem 5.1annot be shown in this way, sine the assoiated set Wτ is not bounded. Here, thefollowing Lemma applies that an be proven ompletely analogous to Lemma 3.2in [18℄.Lemma 5.2. For all µ ≥ 0, it holds that Fµ(w) → ∞ if ‖w‖ → ∞ and w ≥ ya or
w ≤ yb, respetively.The funtion Fµ is diretionally di�erentiable at wτ,µ in all diretions w − wτ,µwith w ∈ Wτ . The optimality of wτ,µ gives

F ′
µ(wτ,µ)(w − wτ,µ) ≥ 0 ∀w ∈ Wτ ,where F

′

µ denotes the diretional derivative of Fµ. Aording to the de�nition of
Fµ, we obtain the variational inequality

(gτ,µ, w − wτ,µ)Q ≥ 0 ∀w ∈ Wτ ,(24)



9where the funtion gτ,µ ∈ L2(Q) is de�ned by(25) gτ,µ := (SD)∗(SDwτ,µ − yd) + κD∗Dwτ,µ − µ

wτ,µ − ya
+

µ

yb − wτ,µ
.Next, we de�ne two auxiliary funtions, namely

pτ,µ := (SD)∗(SDwτ,µ − yd) and qτ,µ := κD∗Dwτ,µ.We show that they are bounded in L∞(Q), uniformly with respet to τ and µ. Tothis aim, we need the following result.Lemma 5.3. The operators D and D∗ are ontinuous in L∞(Q).Proof. To �nd u = Dw, we have to solve the equation εu + Gu = w. In view of (9)and (10), this is equivalent to the following two steps: We solve �rst (9) to �nd y.Next, we obtain u by formula (10). Thanks to Theorem 3.4, the mapping w 7→ y islinear and ontinuous in L∞(Q). Therefore, the same holds true for the mapping
w 7→ u = ε−1(w − y(w)). This shows the ontinuity of D.The proof for D∗ is analogous, sine G∗ is related to an adjoint paraboli equationthat has the same properties as equation (9). �The following Lemma asserts the L∞-boundedness of p and q.Lemma 5.4. There is a positive onstant cp,q suh that

‖pτ,µ‖L∞(Q) + ‖qτ,µ‖L∞(Q) ≤ cp,qholds true for all 0 < τ < cQ/3 and all µ > 0.Proof. We have
‖pτ,µ‖L∞(Q) + ‖qτ,µ‖L∞(Q) ≤ ‖(SD)∗(SDwτ,µ − yd)‖L∞(Q) + κ‖D∗Dwτ,µ‖L∞(Q).In view of Theorem 3.4 and Lemma 5.3, all operators appearing in this formula areontinuous in L∞-spaes on assoiated domains. Moreover, we have assumed that
yd ∈ L∞(Ω). Therefore, the result of the Lemma is an immediate onlusion ofTheorem 5.1. �The main result of this setion, the existene of the entral path, an be shownompletely analogous to the ellipti ase disussed in [18℄. Nevertheless, we brie�ysketh the proof for onveniene of the reader. To this aim, we de�ne the sets

M+(τ, µ) := {(x, t) ∈ Q | gτ,µ(x, t) > 0} ,

M−(τ, µ) := {(x, t) ∈ Q | gτ,µ(x, t) < 0} ,

M0(τ, µ) := {(x, t) ∈ Q | gτ,µ(x, t) = 0} .Lemma 5.5. For all µ > 0, there are positive numbers τ+(µ) and τ−(µ) suh that,for all 0 < τ < τ (µ), the sets M+(τ ) and M−(τ ) have measure zero.Proof. A standard evaluation of (24) yields for almost all (x, t) ∈ Q that
wτ,µ(x, t) =

{

ya(x, t) + τ, (x, t) ∈ M+(τ, µ)
yb(x, t) − τ, (x, t) ∈ M−(τ, µ).Almost everywhere on M+(τ, µ), Lemma 5.4 implies

0 < gτ,µ(x, t) = pτ,µ(x, t) + qτ,µ(x, t) − µ

τ
+

µ

yb(x, t) − ya(x, t) − τ

≤ cp,q −
µ

τ
+ 2

µ

cQ
.(26)



10For τ ↓ 0, the right hand side tends to −∞, a ontradition for all su�ientlysmall τ > 0, say τ < τ+(µ). Consequently, M+(τ, µ) is of measure zero for these τ .Analogously, M−(τ, µ) an be handled. De�ne now τ (µ) := min{τ+(µ), τ−(µ)}, wehave found the bound τ (µ), for that the Lemma holds. �Now we an formulate the main result of this setion.Theorem 5.6. For all µ > 0 and all 0 < τ < τ (µ), the solution wτ,µ of (Aux) isthe unique solution wµ of problem (Pµ).Proof. Sine Q = M0(τ )∪M+(τ )∪M
−
(τ ) and the set M+(τ )∪M

−
(τ ) has measurezero for 0 < τ < min{τ+(µ), τ−(µ)}, we have

gτ,µ(x, t) = 0 a.e. in Q.Therefore, it holds that
F

′

µ(wτ,µ)h =

∫∫

Q

gτ,µ(x, t) h(x, t) dxdt = 0 ∀h ∈ L2(Q),

and hene wτ,µ satis�es the neessary optimality ondition for problem (Pµ). Byonvexity, the neessary onditions are su�ient for optimality. Strong onvexityyields uniqueness (notie that κ > 0). In view of this, wτ,µ is the unique solution
wµ of (Pµ). �Corollary 5.7. Let be µ0 > 0 an initial value. Then, for all 0 < µ < µ0, thesolution wµ of (Pµ) satis�es(27) ya(x, t) + τ (µ) ≤ wµ(x, t) ≤ yb(x, t) − τ (µ), a.e. in Q,where τ (µ) = cτµ > 0 and cτ is given by

cτ =
1

cp,q + 2 µ0

cQ

.Proof. By Theorem 5.6, we have wτ,µ = wµ for all 0 < τ < τ (µ). In view of thede�nition of (Aux), wτ,µ satis�es
ya(x, t) + τ (µ) ≤ wµ(x, t) ≤ yb(x, t) − τ (µ)for all τ < τ (µ), i.e., inequality (27) is satis�ed. Let us quantify τ (µ). From (26),we get µ

τ ≤ cp,q + 2 µ
cQ
, hene

τ ≥ µ

cp,q + 2 µ
cQ

≥ µ

cp,q + 2 µ0

cQ

= cτµ,(28)where cτ = 1
cp,q+2

µ0
cQ

, what gives us τ ≥ τ (µ) = cτµ. �Remark 5.8. Collorary 5.7 shows that minimizing Jµ generates solutions in theinterior of the feasible set, so that the name "interior point method" is justi�ed.After having solved the problem of existene, let us verify and re-formulate theoptimality onditions (20)�(21). We denote by uµ the optimal ontrol with state
yµ given by εuµ +yµ = wµ. The assoiated adjoint state is pµ. De�ne ηa,µ and ηb,µby(29) ηa,µ =

µ

yµ + εuµ − ya
, ηb,µ =

µ

yb − εuµ − yµ
.



11Multiplying (25) by (D∗)−1 = (εI + G∗), we obtain in view of Dwµ = uµ and
Suµ = yµ that(30) S∗(yµ(T ) − yd) + κuµ + ε(ηb,µ − ηa,µ) + G∗(ηb,µ − ηa,µ) = 0.This is the ounterpart to (15). We set(31) pµ := S∗(yµ(T ) − yd) + G∗(ηbµ − ηa,µ).Then, analogous to (19), pµ, yµ, uµ solve the adjoint equation (20). Moreover, (30)beomes

pµ + κuµ + ε(ηb,µ − ηa,µ) = 0.This is equivalent to (21). Summarizing up, we get the optimality system for yµ,
uµ, and pµ,(32) (yµ)t −∇(A∇yµ) + c0yµ = uµ in Q,

∂nyµ + αyµ = 0 on Σ,
yµ(0) = 0 in Ω,

(33) −(pµ)t −∇(A∇pµ) + c0pµ = ηb,µ − ηa,µ in Q,
∂npµ + αpµ = 0 on Σ,

pµ(T ) = yµ − yd in Ω,

pµ + κuµ + ε(ηb,µ − ηa,µ) = 0 a.e. in Q,(34)
(35) ηa,µ ≥ 0, yµ + εuµ − ya ≥ 0, ηa,µ(yµ + εuµ − ya) = µ a.e. in Q,

ηb,µ ≥ 0, yb − εuµ − yµ ≥ 0, ηb,µ(yb − εuµ − yµ) = µ a.e. in Q.Notie that (29) an be rewritten as µ = ηa,µ(yµ+εuµ−ya), µ = ηb,µ(yb−yµ−εuµ).5.2. Convergene. In Setion 5.1, we established the existene of the entral path
µ 7→ wµ for all �xed µ > 0. Now we proeed with proving the ontinuity of themapping µ 7→ wµ and the onvergene towards a solution w̄ of (11)�(12).The unique minimizer wµ of (Pµ) is the solution of F

′

µ(w) = 0, hene
H(wµ; µ) := (SD)∗(SDwµ − yd) + κD∗Dwµ − µ

wµ − ya
+

µ

yb − wµ

= (D∗S∗SD + κD∗D)wµ − D∗S∗yd − µ

wµ − ya
+

µ

yb − wµ
= 0.By Corollary 5.7, we know wµ −ya ≥ τ (µ) and yb −wµ ≥ τ (µ) for all su�ientlysmall µ > 0. H is Fréhet-di�erentiable in all diretions w ∈ L∞(Q) for all µ > 0.Let ∂µH denote the derivative of H with respet to µ and let ∂wH be the derivativeof H with respet to w. The derivative ∂wH is

∂wH(w; µ) = D∗S∗SD + κD∗D +
µ

(w − ya)2
+

µ

(yb − w)2
.(36)It satis�es the estimate

(v, ∂wH(w; µ)v) = (SDv, SDv)Ω+κ (Dv, Dv)+µ

(

v

w − ya
,

v

w − ya

)

+µ

(

v

yb − w
,

v

yb − w

)

≥ κ
1

‖D−1‖2
‖vBy Lemma 5.3, ∂wH is ontinuous in L∞(Q) for all w ∈ L∞(Q) with ya ≤ w ≤ yba.e. in Q. We show the boundedness of the inverse (∂wH)−1 in L∞(Q).



12Theorem 5.9. For all µ > 0, the mapping ∂wH(w; µ) : L∞(Q) → L∞(Q) is abijetion. Its inverse is uniformly bounded for all µ > 0; i.e. there exists a onstant
cinv > 0 suh that

‖∂wH(w; µ)−1‖L∞(Q)→L∞(Q) ≤ cinv for all µ > 0 and for all w ∈ W.The proof is the same as the one for Lemma 4.1 in [18℄, f. the argumentationthere.Theorem 5.10. For µ ↓ 0, wµ onverges towards the solution w̄ of (11)�(12).There is a onstant cpath > 0, suh that
‖wµ − w̄‖L∞(Q) ≤ cpath

√
µholds for all su�iently small µ.The proof is analogous to the one of Theorem 4.3 in [18℄ for the ellipti asewith a unilateral onstraint. However it is more tehnial in view of our bilateralonstraints. The main idea of the proof is to estimate ‖w′‖L∞ . In Lemma 6.5 wewill derive a similar result for a saled norm that shows the tehnique of this proof.6. An interior point algorithmA oneptual interior point algorithm in funtion spae is given by the followingsteps.Algorithm 1.Choose 0 < σ < 1, 0 < eps, and an initial funtion w0 ∈ L∞ suh that ya + τ ≤

w0 ≤ yb − τ holds for some τ > 0. Take µ0 > 0, and set k = 0.while µk > eps do {
µk+1 = σµk ,
dk+1 = −∂Hw(wk; µk+1)

−1H(wk; µk+1)
wk+1 = wk + dk+1k = k+1} The ode-sequene in the while-loop performs one lassial Newton step for theequation H(wk+1; µk+1) = 0 with �xed µk+1.In the numerial analysis, we have to impose ertain restritions on σ to guar-antee onvergene.In the following, we denote the solutions of (Pµ) assoiated with the parameter

µk by subsripts, i.e. wµk
is a point on the entral path and solves H(wµk

; µk) = 0.On the other hand, let wk , k = 1, 2, ... denote the iterates of Algorithm 1 assoiatedwith the parameter µk. Figure 1 illustrates the situation.Under our assumptions, the Newton method provides, for �xed µk, a uniquesolution wµk
. It onverges quadratially to wµk

, if the starting point (in the Figure,we hoose wk−1) is su�iently lose to wµk
.To prove the onvergene of our method in funtion spae, we show that

‖wk − wµk
‖ ≤ c

√
µk and ‖wk − w̄‖ ≤ cσkholds for some onstant c > 0. Clearly, it holds that

wk+1 − wk = dk+1.
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wµk

w
k−1

wµk−1

w0

w
k

wµk+1

w
k+1

Figure 1. Some iterates of Algorithm 1 and the assoiated pointson the entral path.
In ontrast to the Algorithm 5.1 in [18℄, the Newton orretor is assumed to beexat for simpliity, i.e. we assume to ompute dk+1 exatly. Certainly, this is notrealisti for a pratial implementation. However, we do not aim at estimating hereall errors that our in a real omputation.6.1. Saled norms. Loal norms are a valuable tool in the analysis of interiorpoint methods. Here we will use the a�ne saled norm

‖w‖µ := ‖φ(µ)w‖L∞(Q) ,where φ(µ) is de�ned by
φ(µ) =

√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
.(37)For the theory of a�ne saled norms, we refer to [3℄. First, we provide some resultson this saled norm.Lemma 6.1. For all w ∈ L∞(Q), the norm ‖ · ‖µ satis�es the estimate

‖w‖L∞(Q) ≤
ε√
κ
‖w‖µ.Proof. It holds by the de�nition of ‖ · ‖µ and φ(µ) that

‖w‖µ = ‖φ(µ)w‖L∞(Q) ≥ ‖
√

κ

ε2
w‖L∞(Q) =

√

κ

ε2
‖w‖L∞(Q).

�Lemma 6.2. For every w ∈ L∞(Q), the norm ‖ · ‖µ ful�lls
c1
√

µ‖w‖L∞(Q) ≤ ‖w‖µ ≤ c2√
µ
‖w‖L∞(Q).



14Proof. It holds that
‖w‖µ = ‖φ(µ)w‖L∞(Q) =

∥

∥

∥

∥

√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w

∥

∥

∥

∥

L∞(Q)

≤
√

κ

ε2
+

µ

τ (µ)2
+

µ

τ (µ)2
‖w‖L∞(Q) ≤

√

κ

ε2
+

2µ

(cτµ)2
‖w‖L∞(Q)

≤
√

κ

ε2
µ0 +

2

c2
τ

1√
µ
‖w‖L∞(Q) =

c2√
µ
‖w‖L∞(Q),where we have used Corollary 5.7. On the other hand, we have

‖w‖µ = ‖
√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w‖L∞(Q)

≥ ‖
√

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w‖L∞(Q).Now, ya, yb ∈ L∞(Q) yields

max{‖w − ya‖L∞(Q), ‖yb − w‖L∞(Q)} < max
x,t∈Q

{yb(x, t) − ya(x, t)} =: cmax,hene
‖w‖µ ≥ ‖

√

µ

(wµ − ya)2
+

µ

(yb − wµ)2
w‖L∞(Q) >

√
2µ

cmax
‖w‖L∞(Q),so that the onstant c1 :=

√
2

cmax
satis�es the statement of the lemma. �Lemma 6.3. Let 0 < θ < c1cτ be given, where cτ is de�ned in Corollary 5.7 and c1is given by Lemma 6.2. Then it holds for all w ∈ Bµ(wµ; θ

√
µ) := {w ∈ L∞(Q) :

‖w − wµ‖µ ≤ θ
√

µ}
‖∂wH(w; µ)−1η‖µ ≤ cφ‖φ(µ)−1η‖L∞(Q) ∀ η ∈ L∞(Q),where cφ is de�ned by cφ = 1 + ε2

κ |Q|‖K‖L2(Q)→L∞(Q) < ∞.Proof. Let us �rst disuss the form of the operator D. We have by its de�nition
D = (G + εI)−1. Take w = Dz, then z = D−1w = (G + εI)w = Gw + εw. Onthe other hand, εw = z − Gw = z − GDz = (I − GD)z. Altogether, we have
D = 1

ε (I − GD).From that, we get the representation
D∗D =

1

ε2
(I − GD)∗(1 − GD) =

1

ε2
(I − (GD)∗ − GD + (D∗G∗GD)).We de�ne K = D∗S∗SD+ κ

ε (G∗D∗DG−(G∗D∗+GD)). This operator assemblesthe onstant parts of ∂wH. The derivative of ∂wH(w; µ) = D∗S∗SD + κD∗D +
µ

(w−ya)2 + µ
(yb−w)2 reads now

∂wH(w; µ) = D∗S∗SD +
κ

ε2
(I − (GD)∗ − GD + (D∗G∗GD)) +

µ

(w − ya)2
+

µ

(yb − w)2

= D∗S∗SD +
κ

ε2
((GD)∗ − GD + (D∗G∗GD)) +

κ

ε2
+

µ

(w − ya)2
+

µ

(yb − w)2

= K +
κ

ε2
+

µ

(w − ya)2
+

µ

(yb − w)2
= K + φ2(µ).



15Here, we have used the feasibility of w given by w ∈ Bµ(wµ; θ
√

µ) and Corollary5.7. Saling the inverse of ∂wH by φ(µ), the identity
φ(µ)∂wH(w; µ)−1φ(µ) = φ(µ)

(

K + φ2(µ)
)−1

φ(µ)

=
(

φ(µ)−1
)−1 (

(K + φ2(µ))
)−1 (

φ(µ)−1
)−1

=
(

φ(µ)−1
(

K + φ2(µ)
)

φ(µ)−1
)−1

=
(

φ(µ)−1Kφ(µ)−1 + I
)−1holds. From that we get the L2-estimate

‖φ(µ)∂wH(w; µ)−1η‖ = ‖φ(µ)∂wH(w; µ)−1φ(µ)φ(µ)−1η‖
= ‖(φ(µ)−1Kφ(µ)−1 + I)−1φ(µ)−1η‖
≤ ‖φ−1(µ)η‖,(38)where we used that K is a positive de�nite operator and ‖φ−1(µ)Kφ−1(µ) +

I‖L2(Q)→L2(Q) ≥ 1.Setting ω := ∂wH(w; µ)−1η, we have η = (K +φ2(µ))ω, hene φ2(µ)ω = η−Kωand
‖φ(µ)∂wH(w; µ)−1η‖L∞(Q) = ‖φ(µ)ω‖L∞(Q) = ‖φ(µ)φ(µ)−2(η − Kω)‖L∞(Q)

= ‖φ(µ)−1(η − Kω)‖L∞(Q)

≤ ‖φ(µ)−1η‖L∞(Q) + ‖φ(µ)−1Kω‖L∞(Q)

≤ ‖φ(µ)−1η‖L∞(Q) + ‖φ(µ)−1‖L∞(Q)‖Kω‖L∞(Q)

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖ω‖

= ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖φ(µ)−1φ(µ)∂wH(w; µ)−1η‖

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖φ(µ)−1‖‖φ(µ)∂wH(w; µ)−1η‖

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)‖φ(µ)−1‖‖φ(µ)−1η‖

≤ ‖φ(µ)−1η‖L∞(Q) +
ε√
κ
‖K‖L2(Q)→L∞(Q)

ε√
κ
|Q|‖φ(µ)−1η‖L∞(Q),(39)where we inserted the L2-estimate (38) and used ‖w‖L2(Q) ≤

√

|Q|‖w‖L∞ . Withhelp of (39), we an �nally estimate
‖∂wH(w; µ)−1η‖µ = ‖φ(µ)∂wH(w; µ)−1η‖L∞(Q)

≤
(

1 +
ε2

κ
|Q|‖K‖L2(Q)→L∞(Q)

)

‖φ(µ)−1η‖L∞(Q),whih gives us the onstant cφ to obtain the desired result. �Lemma 6.4. For all 0 < θ < 1 and all w ∈ Bµ(wµ; θ
√

µ), the following estimateshold true:
w − ya ≥ (1 − θ)(wµ − ya) a.e. in Qand
yb − w ≥ (1 − θ)(yb − wµ) a.e. in Q.



16Proof. By its de�nition, the diagonal preonditioner φ(µ) satis�es a.e. in Q

√

µ

(wµ − ya)2
≤ φ(µ)and

√

µ

(yb − wµ)2
≤ φ(µ)for all ya < wµ < yb. For all w ∈ Bµ(wµ; θ

√
µ) we obtain

∥

∥

∥

∥

w − wµ

wµ − ya

∥

∥

∥

∥

L∞(Q)

=

∥

∥

∥

∥

w − wµ√
µ

√

µ

(wµ − ya)2

∥

∥

∥

∥

L∞(Q)

≤ 1√
µ
‖φ(µ)(w − wµ)‖L∞(Q)

=
1√
µ
‖w − wµ‖µ < θ < 1,sine w ∈ Bµ(wµ, θ

√
µ). From wµ − ya > 0 a.e. in Q we therefore get

±(w − wµ) ≤ θ(wµ − ya) a.e. in Q,hene, multiplying the minus-version by (−1) and adding on both sides (wµ − ya),
w − ya ≥ (1 − θ)(wµ − ya).By the same argumentation we obtain the estimate yb −w ≥ (1− θ)(yb −wµ). �Lemma 6.5. Let w

′

µ =
∂wµ

∂µ = −∂wH(w; µ)−1∂µH(w; µ) be the derivative of wµwith respet to µ. Then the µ-norm of w
′

µ is bounded by a onstant depending on√
µ, i.e.

‖w′

µ‖µ ≤
√

2cφ√
µfor all 0 < µ ≤ µ0.Proof. We follow the proof in [17℄, Theorem 5.9. First, we have ‖w′

µ‖L∞(Q) ≤ c√
µ .We use Lemma 6.3 and estimate

‖w′

µ‖µ = ‖∂wH−1(wµ; µ)∂µH(wµ; µ)‖µ

≤ cφ‖φ−1(µ)∂µH(wµ; µ)‖L∞(Q)

= cφ

∥

∥

∥

∥

φ−1(µ)

(

1

yb − wµ
− 1

wµ − ya

)∥

∥

∥

∥

L∞(Q)

.

From the de�nition of φ(µ) we see immediately
φ(µ) =

√

κ

ε2
+

µ

(wµ − ya)2
+

µ

(yb − wµ)2
>

√

µ

(wµ − ya)2
+

µ

(yb − wµ)2
.



17This gives us
‖w′

µ‖µ ≤ cφ

∥

∥

∥

∥

∥

(
√

µ

(wµ − ya)2
+

µ

(yb − wµ)2

)−1(
1

yb − wµ
− 1

wµ − ya

)

∥

∥

∥

∥

∥

L∞(Q)

= cφ

∥

∥

∥

∥

∥

1√
µ

√

(wµ − ya)2(yb − wµ)2

(yb − wµ)2 + (wµ − ya)2
(wµ − ya) − (yb − wµ)

(wµ − ya)(yb − wµ)

∥

∥

∥

∥

∥

L∞(Q)

≤ cφ

∥

∥

∥

∥

∥

1√
µ

(wµ − ya)(yb − wµ)
√

(yb − wµ)2 + (wµ − ya)2
(wµ − ya) + (yb − wµ)

(wµ − ya)(yb − wµ)

∥

∥

∥

∥

∥

L∞(Q)

=
cφ√
µ

∥

∥

∥

∥

∥

(wµ − ya) + (yb − wµ)
√

(yb − wµ)2 + (wµ − ya)2

∥

∥

∥

∥

∥

L∞(Q)

≤ cφ

√
2√

µwhere we used, that (x + y)/
√

(x2 + y2) <
√

2 for all x, y > 0. �Moreover, we need the following relation between the µk- and the µk+1-norms.Lemma 6.6. For all w ∈ L∞(Q), and all 0 < σ < 1, 0 < µ < µ0, it holds that
‖w‖σµ ≤ cσµ‖w‖µ.where cσ = 3σ1/2−

√
2cφ .Proof. First, we observe

‖w‖σµ = ‖φ(σµ)w‖L∞(Q) =

∥

∥

∥

∥

φ(σµ)

φ(µ)
φ(µ)w

∥

∥

∥

∥

L∞(Q)

≤
∥

∥

∥

∥

φ(σµ)

φ(µ)

∥

∥

∥

∥

L∞(Q)

‖w‖µ.

Now, the main work of the proof is to estimate ∥∥
∥

φ(σµ)
φ(µ)

∥

∥

∥

L∞(Q)
=

∥

∥

∥

∥

κ

ε2 + σµ

(wσµ−ya)2
+ σµ

(yb−wσµ)2

κ

ε2 + µ

(wµ−ya)2
+ µ

(yb−wµ)2

∥

∥

∥

∥

1/2

L∞(Q)

.We de�ne two funtions υa(σ), υb(σ) ∈ L∞(Q)

(υa(σ))(x, t) =

(

wµ − ya

wσµ − ya

)

(x, t) and (υb(σ))(x, t) =

(

yb − wµ

yb − wσµ

)

(x, t).Beause µ 7→ wµ is a di�erentiable mapping from R+ to L∞(Q), the funtions υa,
υb map (0, 1] di�erentiably into L∞(Q). We derive a bound for the funtion υa,the proof of boundedness for υb is ompletely analogous.First, we estimate the derivative of υa with respet to σ:
‖υ′

a(σ)‖L∞(Q) =

∥

∥

∥

∥

wµ − ya

(wσµ − ya)2
w

′

σµµ

∥

∥

∥

∥

L∞(Q)

≤
∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥

∥

1

wσµ − ya
w

′

σµ

∥

∥

∥

∥

L∞(Q)

µ

=

∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥

∥

√
σµ

wσµ − ya
w

′

σµ

∥

∥

∥

∥

L∞(Q)

µ√
σµ

≤
∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥

∥

√

κ

ε2
+

σµ

(wσµ − ya)2
+

σµ

(yb − wσµ)2
w

′

σµ

∥

∥

∥

∥

L∞(Q)

µ√
σµ

=

∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

∥

∥

∥w
′

σµ

∥

∥

∥

σµ

µ√
σµ

≤ ‖υa(σ)‖L∞(Q)

√
2cφ

σ
.(40)



18by Lemma 6.5. With the identity υa(σ) = υ(1) −
1
∫

σ

υ
′

(γ) dγ we �nd by (40)
‖υa(σ)‖L∞(Q) ≤ ‖υa(1)‖L∞(Q)+

∥

∥

∥

∥

∥

∥

1
∫

σ

υ
′

a(γ) dγ

∥

∥

∥

∥

∥

∥

L∞(Q)

≤ 1+

1
∫

σ

√
2cφ

γ
‖υa(γ)‖L∞(Q)dγ.

Now we use the Gronwall Lemma to onlude
‖υa(σ)‖L∞(Q) =

∥

∥

∥

∥

wµ − ya

wσµ − ya

∥

∥

∥

∥

L∞(Q)

≤ σ−
√

2cφ .(41)In an analogous manner, we get the estimate
‖υb(σ)‖L∞(Q) =

∥

∥

∥

∥

yb − wµ

yb − wσµ

∥

∥

∥

∥

L∞(Q)

≤ σ−
√

2cφ .(42)Next, we notie the following auxiliary result: For all positive numbers c, a1, a2,
b1, b2. it holds

c + a1 + a2

c + b1 + b2
≤ 1 +

a1

b1
+

a2

b2
.(43)To verify this, we disuss three ases. If a1 + a2 ≤ a2 + b2, then the left-handside is less or equal than one so that the inequality is true.If a1 > b1 and a2 > b2, then we have

c + a1 + a2

c + b1 + b2
= 1 +

a1 − b1

c + b1 + b2
+

a2 − b2

c + b1 + b2
≤ 1 +

a1

b1
+

a2

b2
.If a1 + a2 > b1 + b2 and a1 > b1 but a2 < b2, then a2−b2

c+b1+b2
is negative, hene

c + a1 + a2

c + b1 + b2
≤ 1 +

a1 − b1

c + b1 + b2
≤ 1 +

a1

b1
≤ 1 +

a1

b1
+

a2

b2
.The ase a1 < b1 but a2 > b2 is analogous. Now we an proeed to estimate

∥

∥

∥

φ(σµ)
φ(µ)

∥

∥

∥

L∞(Q)
. For �xed (x, t) ∈ Q, we distinguish between two ases:(i) (φ(σµ))(x, t) ≤ (φ(µ))(x, t). Then (φ(σµ)

φ(µ)

)

(x, t) ≤ 1 is satis�ed.(ii) If (φ(σµ))(x, t) > (φ(µ))(x, t), then by ombining (43), (42), and (41) we anestimate
1 <

(

φ(σµ)

φ(µ)

)

(x, t) =





√

κ
ε2 + σµ

(wσµ−ya)2 + σµ
(yb−wσµ)2

√

κ
ε2 + µ

(wσµ−ya)2 + µ
(yb−wσµ)2



 (x, t)

≤
(
√

1 + σ
(wµ − ya)2

(wσµ − ya)2
+

(yb − wµ)2

(yb − wσµ)2

)

(x, t)

≤
(

1 +

√

σ
(wµ − ya)2

(wσµ − ya)2
+

√

σ
(yb − wµ)2

(yb − wσµ)2

)

(x, t)

=

(

1 +
√

σ
wµ − ya

wσµ − ya
+
√

σ
yb − wµ

yb − wσµ

)

(x, t)

≤ 1 + 2σ1/2−
√

2cφ ≤ 3σ1/2−
√

2cφ ,



19where we used cφ ≥ 1, so that 1/2−
√

2cφ < 0, and hene it holds σ1/2−
√

2cφ > 1 forall cφ. Clearly (i) and (ii) imply ‖φ(σµ)
φ(µ) ‖L∞(Q) ≤ max{1, 3σ1/2−

√
2cφ}. By σ < 1,

cφ ≥ 1, we see that the maximum is 3σ1/2−
√

2cφ . �Lemma 6.7. (Lipshitz-Condition) For all 0 < θ < 1 and all w, ŵ ∈ Bµ(wµ, θ
√

µ),the following Lipshitz ondition holds:
(44) ‖∂wH(w; µ)−1(∂wH(w; µ) − ∂wH(ŵ; µ))(w − ŵ)‖µ ≤ 2

√
2cφ

(1 − θ)3
√

µ
‖w − ŵ‖2

µ.Proof. The main idea of the proof is analogous to the proof of Lemma 5.5 in [18℄for unilateral onstraints. The di�ulty here is the more ompliated struture of
φ(µ), what results in a more tehnial proof. For onveniene of the reader, weperform it here in detail.By Lemma 6.3 we obtain
‖∂wH(w; µ)−1(∂wH(w; µ) − ∂wH(ŵ; µ))(w − ŵ)‖µ

≤ cφ‖φ(µ)−1(∂wH(w; µ) − ∂wH(ŵ; µ))(w − ŵ)‖L∞(Q)

= cφ

∥

∥

∥

∥

φ(µ)−1

(

µ

(w − ya)2
+

µ

(yb − w)2
− µ

(ŵ − ya)2
− µ

(yb − ŵ)2

)

· (w − ŵ)

∥

∥

∥

∥

L∞(Qsine the onstant parts of ∂wH(w; µ) are ompensated by the onstant parts of
∂wH(ŵ; µ), f. the de�nition of ∂wH(w; µ) in (36). By Lemma 6.4, we get w−ya ≥
(1 − θ)(wµ − ya) and yb − w ≥ (1 − θ)(yb − wµ). The same holds for ŵ. Beausethe Lipshitz onstant of x−2 for x ≥ a > 0 is 2a−3, we an estimate
‖∂wH(w; µ)−1(∂wH(w; µ)−∂wH(ŵ; µ))(w − ŵ)‖µ

≤ cφ‖φ(µ)−1

(

2µ

(1 − θ)3(wµ − ya)3
+

2µ

(1 − θ)3(yb − wµ)3

)

(w − ŵ)2‖L∞(Q)

=

√
2cφ

(1 − θ)3

∥

∥

∥

∥

(

µ

φ(µ)3(wµ − ya)3
+

µ

φ(µ)3(yb − wµ)3

)

φ(µ)2(w − ŵ)2
∥

∥

∥

∥

L∞(Q)

≤
√

2cφ

(1 − θ)3

∥

∥

∥

∥

µ

φ(µ)3(wµ − ya)3
+

µ

φ(µ)3(yb − wµ)3

∥

∥

∥

∥

L∞(Q)

‖w − ŵ‖2
µ

≤
√

2cφ

(1 − θ)3

(

∥

∥

∥

∥

µ

φ(µ)3(wµ − ya)3

∥

∥

∥

∥

L∞(Q)

+

∥

∥

∥

∥

µ

φ(µ)3(yb − wµ)3

∥

∥

∥

∥

L∞(Q)

)

‖w − ŵ‖2
µ.

We show that µ
φ(µ)3(wµ−ya)3 and µ

(φ(µ)3(yb−wµ)3 are essentially bounded by 1/
√

µ.First, we �nd
φ(µ)3(wµ − ya)3 =

(
√

κ

ε2
(wµ − ya)2 +

µ(wµ − ya)2

(wµ − ya)2
+

µ(wµ − ya)2

(yb − wµ)2

)3

≥ (
√

µ)
3
.



20From that we get ∥∥∥ µ
φ(µ)3(wµ−ya)3

∥

∥

∥

L∞(Q)
≤ µ/µ3/2 = 1/

√
µ. The same holds for theterm ontaining yb. Altogether, this yields the Lipshitz ondition(45)

‖∂wH(w; µ)−1(∂wH(w; µ)−∂wH(ŵ; µ))(w−ŵ)‖µ ≤ 2
√

2cφ

(1 − θ)3
√

µ
‖w−ŵ‖2

µ, k = 1, 2, ...

�Lemma 6.8. Let ‖w0 − wµ0
‖µ0

≤ θ
√

µ0 with µ0 > 0, 0 < θ < 1/32cφ and let be σgiven by ( θ+1
4
3 θ+1

)1/2cφ

< σ < 1. Then the iterates of Algorithm 1 obey
‖wk − wµk+1

‖µk+1
≤ θ

√
µk+1 = θ

√
µ0σ

k/2.Proof. We proeed by indution. Assume that ‖wk −wµk
‖ ≤ θ

√
µk holds for some

k ∈ N ∪ {0}. It holds
‖wk − wµk+1

‖µk+1
≤ ‖wk − wµk

‖µk+1
+ ‖wµk

− wµk+1
‖µk+1

≤ ‖wk − wµk
‖µk+1

+

∥

∥

∥

∥

∥

∫ µk

µk+1

w
′

τ dτ

∥

∥

∥

∥

∥

µk+1

.By Lemma 6.3, the �rst item an be estimated as
‖wk − wµk

‖µk+1
≤ 3σ1/2−

√
2cφ‖wk − wµk

‖µk
≤ 3σ1/2−

√
2cφθ

√
µk.The term ontaining the integral an be estimated in the following way: Setting

µk+1 = σ̄τ , σ̄ = µk+1

τ , we obtain
∥

∥

∥

∥

∥

∫ µk

µk+1

w
′

τ dτ

∥

∥

∥

∥

∥

µk+1

≤
µk
∫

µk+1

(

3 (µk+1/τ )
1/2−

√
2cφ

)

‖w′

τ‖τ dτ ≤ 3µ
1/2−

√
2cφ

k+1

µk
∫

µk+1

τ−(1/2−
√

2cφ)

√
2cφ√
τ

dτ

= 3
√

2cφµ
1/2−

√
2cφ

k+1

µk
∫

σµk

τ−1+
√

2cφ dτ = 3
√

2cφµ
1/2−

√
2cφ

k+1





τ
√

2cφ

√
2cφ

∣

∣

∣

∣

∣

µk

σµk





= 3µ
1/2−

√
2cφ

k+1

(

µ
√

2cφ

k − σ
√

2cφµ
√

2cφ

k

)

= 3σ1/2−
√

2cφµ
1/2−

√
2cφ

k

(

1 − σ
√

2cφ

)

µ
√

2cφ

k

= 3σ1/2−
√

2cφ

(

1 − σ
√

2cφ

)

µ
1/2
k ,where we used Lemma 6.6 and Lemma 6.5.Summarizing up, we obtain

‖wk − wµk+1
‖µk+1

≤ 3σ1/2−
√

2cφθµ
1/2
k + 3σ1/2−

√
2cφ

(

1 − σ
√

2cφ

)

µ
1/2
k

= 3σ1/2−
√

2cφ

(

θ + 1 − σ
√

2cφ

)

µ
1/2
k

= 3σ−
√

2cφ

(

θ + 1 − σ
√

2cφ

)√
µk+1,(46)what gives us the onstant c(θ, σ, cφ) := 3σ−

√
2cφ

(

θ + 1 − σ
√

2cφ

).Now we hoose σ suh that c(θ, σ, cφ) ≤ 4θ holds. Later, we need this result toperform one Newton step in diretion wk+1, where we use, that the initial value
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wk for that step is in a 4θ-ball around the assoiated wµk

on the entral path. Thedesired inequality is equivalent with
θ + 1 − σ

√
2cφ ≤ 4

3
θσ

√
2cφ .Resolving for σ

√
2cφ , we obtain

θ + 1
4
3θ + 1

≤ σ
√

2cφand hene
σ ≥

(

θ + 1
4
3θ + 1

)1/
√

2cφ

.Now we have found a suitable 0 < σ < 1, suh that 3σ−
√

2cφ

(

θ + 1 − σ
√

2cφ

)

≤ 4θ.Sine the right-hand side is less then one, hene we an �nd σ < 1 satisfying thisinequality. For our hoie of σ, the result (46) reads
‖wk − wµk+1

‖µk+1
≤ 4θ

√
µk+1.(47)Next, we perform one Newton-step in the diretion wµk+1

. With cφ ≥ 1 in mind,we an hoose e.g. θ = 1/32cφ < 1/32 , where we have 4θ < 1/8. In the ball
Bµk+1

(wµk+1
, 4θ

√
µk+1) we obtain by Lemma 6.7 the Lipshitz-onstant

ω =
2
√

2cφ

(1 − 4θ)3
√

µk+1
.By our assumption on w0 and by our hoie of σ and θ, we have wk ∈ Bµk+1

(wµk+1
, 4θ

√
µk+1) ⊂

Bµk+1
(wµk+1

, 2/ω), f.(47). Now the assumptions of the Newton-Mysovskii-Theoremare ful�lled, f. Theorem 1.2 in [4℄. (We have an "a�ne invariant" Lipshitz on-stant ω and wk is lose to wµk+1
, i.e. wk ∈ Bµk+1

(wµk+1
, 2/ω).) The theoremprovides now

‖wk+1 − wµk+1
‖µk+1

≤ ω

2
‖wk − wµk+1

‖2
µk+1

<

√
2cφ

(1 − 4θ)3
√

µk+1
‖wk − wµk+1

‖2
µk+1

.By our hoie of σ, we have by (47)
‖wk − wµk+1

‖2
µk+1

≤ 16θ2µk+1,and �nally, we get the estimate
‖wk+1 − wµk+1

‖µk+1
≤ 16

√
2cφθ2

(1 − 4θ)3
√

µk+1
µk+1 =

16
√

2cφθ2

(1 − 4θ)3
√

µk+1.For θ = 1
32cφ

≤ 1
32 we have

16
√

2cφθ2

(1 − 4θ)3
=

16
√

2cφ

322c2
φ

(

1 − 1
8cφ

)3

=

√
2

64cφ

(

8cφ − 1

8cφ

)3

≤ 1

32cφ
= θ.Altogether we have

‖wk+1 − wµk+1
‖µk+1

≤ θ
√

µk+1



22for θ = 1/32cφ and for all σ >
(

θ+1
4
3 θ+1

)1/2cφ . �Theorem 6.9. Assume that ‖w0−wµ0
‖µ0

≤ θ
√

µ0, where 0 < σ < 1 and 0 < θ < 1are given by Lemma 6.8. Then the iterates wk of Algorithm 1 onverge linearlytowards the solution w̄ of problem (P): There is some c > 0, suh that
‖wk − w̄‖L∞(Q) ≤ cσk/2, k = 0, 1, 2, ...Proof. We have

‖wk − w̄‖L∞(Q) ≤ ‖wk − wµk
‖L∞(Q) + ‖wµk

− w̄‖L∞(Q)

≤ ε√
κ
‖wk − wµk

‖µk
+ ‖wµk

− w̄‖L∞(Q),(48)where the onstant ε√
κ
results from the transition from the L∞-norm to the

µ-norm, f. Lemma 6.1. The �rst item an be estimated by Lemma 6.8 as
‖wk − wµk

‖µk
≤ θ

√
µk = θ

√
µ0σ

k/2.The seond item of (48) an be estimated by the length of a segment of the entralpath: Theorem 5.10 yields ‖wµk
− w̄‖L∞(Q) ≤ cpath

√
µk = cpath

√
µ0σ

k/2. Togetherwith (48), we arrive at
‖wk − w̄‖L∞(Q) ≤

(

ε√
κ

θ + cpath

)√
µ0σ

k/2 =: cσk/2.

�7. Numerial examples7.1. Disretization of the optimality system. In Setion 5.1, we have intro-dued the optimality system (32)�(35) for our problem with state equation (2).In view of our test examples, we will use now the extended form (5) of the stateequation, for whih the theory works as well, f. Remark 3.5. In (35) we write
ηa,µ = µ

εu+y−ya
and ηb,µ = µ

yb−εu−y and we have to solve the optimality system
yt −∇ · (A∇y) + c0y = u + f in Q,

∂ny + αy = g on Σ,
y(0) = y0 in Ω,

(49)
−pt −∇ · (A∇p) + c0p = − µ

εu+y−ya
+ µ

yb−εu−y in Q,

∂np + αp = 0 on Σ,
p(T ) = y(T ) − yd in Ω,

(50)
κu + p − εµ

εu + y − ya
+

εµ

yb − εu − y
= 0 a.e. in Q.(51)Our test examples are de�ned in one-dimensional domains Ω = (a, b). Let 0 =

t0 < t1 < ... < tn = T be a partion of [0, T ], and denote by δk = tk − tk−1 the timesteps. De�ne yk = y(·, tk), uk = u(·, tk), pk = p(·, tk), gk = g(·, tk),(ya)k = ya(·, tk),
(yb)k = yb(·, tk), (yd)k = yd(·, tk), k = 0, 1, ..., n. Using an impliit Euler sheme fordisretizing (49) and (50) in time, we have to solve a sequene of ellipti problems

−∇ · (A∇yk+1) +
1 + δk+1c0

δk+1
yk+1 =

1

δk+1
yk + uk+1 + fk+1,

∂nyk+1 + αyk+1 = gk+1(52)



23for k = 0, ..., n − 1, starting at
y(·, 0) = y0.To get a fully disrete system, we use linear �nite elements to disretize the elliptisubproblems. Let a = x0 < x1 < ... < xn = b be a partition of (a, b) = Ω ⊂ R with

hi = xi+1 − xi, i = 0, ..., n− 1. By using standard hat funtions with ϕi(xj) = δij ,
i, j ∈ I, where I ⊂ N is the set of indies of the nodes xi, we an identify theoe�ients of the FEM approximation of a funtion by the values of the funtion fin the nodes, f(x) ≈∑i∈I f(xi)ϕi(x). In all what follows, we identify the funtions
f , y, u, et. by their oe�ent vetors (f(xi)), (y(xi)), (u(xi)) and denote themby the same symbols, i.e., we will write f instead (f(xi)) et.By the sti�ness matrixK = (Kij), Kij =

∫

Ω

(aij∇ϕj) · (∇ϕi) dx,the mass matriesMk+1 = (Mij)k+1, Mij,k+1 =

∫

Ω

1 + δk+1c0

δk+1
ϕjϕi dx,M̄ = (M̄ij), M̄ij =

∫

Ω

ϕjϕi dx,and the matries assoiated with the boundary Γ,Q = (Qij), Qij =

∫

Γ

αϕjϕi ds,G = (Gi), Gi =

∫

Γ

gϕi ds,the FEM representation of the ellipti subproblems is given by(53) (K+Mk+1 +Q)yk+1 =
1

δk+1
M̄yk + M̄(uk+1 + fk+1) +Gk+1,

k = 0, 1, ..., n − 1. Analogously, the adjoint equation is disretized by
(K+Mk +Q)pk = M̄(

µ

yk + εuk − (ya)k

)

−M̄(

µ

(yb)k − yk − εuk

)

+
1

δk
M̄pk+1(54)for k = n − 1, ..., 0 with terminal ondition

pn = yn − yd.The vetors µ
yk+εuk−(ya)k

and µ
(yb)k−yk−εuk

are de�ned by
(

µ

yk + εuk − (ya)k

)

i

=
µ

(yk)i + ε(uk)i − ((ya)k)iand
(

µ

(yb)k − yk − εuk

)

i

=
µ

((yb)k)i − (yk)i − ε(uk)i
,for i = 0, ..., n, respetively. These equations are oupled through the disreteversion of the gradient equation(55) κuk + pk +

εµ

(yb)k − yk − εuk
− εµ

yk + εuk − (ya)k
= 0,



24for k = 0, ..., n.We arrange the oe�ient vetors as follows:
z = [yT

0 , yT
1 , . . . , yT

n , uT
0 , uT

1 , . . . , uT
n , pT

0 , pT
1 , . . . , pT

n ]T .The identities yT
0 = y(0) and pT

n = yT
n − yT

d are implemented by identity matriesin the disrete optimality system. We write now the optimality onditions as anonlinear system
F (z; µ) := Ξz + Ψ(z) + Φ = 0,where Ξ is a large, sparse matrix, essentially built of bloks K + Mk + Q on thediagonal and M̄ on the subdiagonal. Ψ is a funtion that overs the nonlinearityand Φ is a vetor that ontains the onstant parts of the equations (53)�(55).One di�ulty in the Algorithm 1 is to �nd a suitable initial funtion z0. Thefollowing steps provide a feasible initial funtion that an be expeted su�ientlylose to zµ0

. Moreover, the time and spae disretizations an be adapted duringthe omputations.Algorithm 2. (Computation of z0 on an adapted grid)(i) De�ne equidistant initial partitions T0 = {t0, t0 + δt, ..., T} of [0, T ] and
Ω0 = {a = x0, x0 + h, ..., xn = b} of Ω = (a, b), where δt and h are the�xed initial stepsizes in time and spae, respetively.(ii) Choose z0 = (yT

0 , uT
0 , pT

0 )T feasible, i.e. ya ≤ y0 + εu0 ≤ yb, while p0 anbe taken arbitrarily.(iii) Assemble the matries K, Mk, M̄, Q, and the vetor G.(iv) Choose µ0 > 0. Compute a solution of
F (z; µ0) = 0by the Newton Method.(v) Re�ne the spae and time grids by suitable methods.(vi) Reassemble all matries and ompose the assoiated system matrix Ξ. In-terpolate z onto the new grids.Remark 7.1. After step (iv) of Algorithm 2, we have determined a solution ofa disrete Newton system of PDEs. In priniple, this solution might be taken asthe starting value for Algorithm 1. However, our numerial experiene showed thatthe disretization error may dominate the entire error, so that Algorithm 1 fails.Therefore, an adaptive re�nement of the grid turned out to be neessary. This stepis the main aim of Algorithm 2.The spatial grids may hange between the di�erent time steps. After Algorithm2 is �nished, the joint re�nement of all spatial grids is taken as the �xed spatialgrid for Algorithm 1. The disretized version of Algorithm 1 is started with z0.For all omputations, we used Matlab 7.1.0 R14 on a Pentium IV mahine with1GB memory. The linear subproblems are solved by diret methods. For re�nigthe meshes in Algorithm 2, we used for the time re�nement ode15s with the settingRelTol = 1e-3, MaxOrder = 1, and BDF=on. For the grid re�nement in spae, weapplied an error indiator funtion similar to the one desribed in [12℄. The spatialgrid is �xed in all time steps.



257.2. Examples.Example 1. We tested our method by the problem
min J(y, u) :=

1

2
‖y(T ) − yd‖2

L2(Ω) +
κ

2
‖u‖2

L2(Q)subjet to
yt − ∆y = u in Q,

∂ny + 10y = 0 on Σ,

y(0) = y0 in Ω,and to the mixed ontrol-state onstraints
y + εu ≥ ya := max{−100(t(t − 1) + x(x − 1)) − 49.0, 0.5} a.e. in Q.We take Ω = (0, 1) ⊂ R, T = 1. Further, let there be given yd ≡ 0 and y0 = sin (πx).Obviously, this problem �ts in our general setting with α = 10.Unontrolled solutions of the heat equation are known to deay exponentially intime. The onstraints are hosen to form an obstale for this deay suh that a on-trol ation is needed to ful�l them. In this way, a reasonable ative set is expeted.Although we do not know the exat solution of this problem, the omputations on-�rmed this behaviour.In our examples, there is no upper bound yb, but it is lear that our methodovers the one-sided ase as well, f. our omments before Lemma 5.2. In ontrastto the next example, here the exat optimal ontrol ū and the assoiated funtions

ȳ, p and ηa are unknown.The initial vetor for Algorithm 2 was z0 with all entries equal to zero and theinitial stepsizes were h = 0.01 and δt = 0.005. In Algorithm 1, we hoose σ = 0.8,
µ0 = 10−3, and eps = 10−5. Figures 2 and 3 show the omputed optimal solutions
ȳ , p , ū and ηa = µ

εu+y−ya
for the regularized problem with ε = 10−3 and κ = 10−3.In ontrast to the next example, we only provide the �gures of the �nal result,sine the distane to the optimal solution annot be estimated. In this example, westopped Algorithm 2 after two outer iteration to re�ne the time and spae grids.The interior-point algorithm needed up to 40 inner iterations for dereasing µ.

(a) optimal ontrol (b) optimal stateFigure 2. Solutions to Example 1, ontrol and state.
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(a) adjoint state (b) Lagrange multiplierFigure 3. Solutions to Example 1, adjoint and approximation onthe multiplier.
Example 2. Here, we onsider the slightly modi�ed problem

min J(y, u) :=
1

2
‖y(T ) − yΩ‖2

L2(Ω) +
κ

2
‖u‖2

L2(Q) +

∫∫

Q

yQy dxdt,

subjet to
yt − ∆y = u + f in Q,

y = 0 on Σ,
y(0) = y0 in Ω,

(56)
and to the mixed ontrol-state onstraints

ya ≤ y + ε(u + f) a.e. in Q.The last term in the objetive funtion was added to onstrut an example withexpliitly known optimal solution. This term does not hange our theory. Wesimply have to add its derivative yQ to the right hand side of the adjoint equation.We onstrut an optimal solution whih ful�lls the optimality onditions (49)�(51) for the unregularized problem, i.e., for ε = 0.Remark 7.2. In Setion 5, it was shown that the Lavrentiev-regularization is es-sential for our theory. We onsider here an unregularized problem, beause our aimis to onstrut an example with a regular Borel measure as Lagrange multiplier.In Setion 4 we have shown that for ε > 0 the Lagrange multipliers are funtionfrom L2, only for ε = 0 we will get measures. On the other hand, in some reentpapers, e.g. in [21℄, [14℄, [18℄, Setion 7, and [20℄, the onvergene of the optimalontrol ūε of the regularized problem to the optimal ontrol ū of the unregularizedone is shown with order √
µ. For su�iently small ε, e.g. ε < 10−6, we an expetthat the regularization error an be negleted in omparison with the error ‖uµ − ū‖measured in the L2-norm. Indeed, this is our numerial observation.



27The integral ∫∫
Q

yQy dxdt in the objetive funtion leads to the adjoint equation
−pt + ∆p = yQ − µ

y−ya
in Q,

p = 0 on Σ,
p(T ) = y(T ) − yd in Ωinstead of (50).Constrution of the optimal solution. We hoose Ω = (0, π), T = 1, andde�ne the optimal state by ȳ(x, t) := e−t sin (x). Together with ȳ(x, 0) = sin (x) and

ȳ(x, T ) = e−1 sin (x) we obtain from (56) and yt −∆y = 0 the ondition ū + f = 0.From the gradient equation (51) and ε = 0 we therefore get f = 1
κp. Next,we onstrut the state onstraint suh that ȳ touhes the bound ya only on a set

(t1, t2)×
{

π
2

}. This set has measure zero, so that we onstrut a Lagrange multiplieras a regular Borel measure. We take t1 = 0.3 and t2 = 0.6. The bound ya is �xedby ya(x, t) = η(t)θ(x) with
η(t) =











1
2

t−t1
t0−t1

+ e−t1 t
t1

, t ∈ (0, t1),e−t, t ∈ (t1, t2),e−t2 t−1
t2−1 + 1

8
t−t2
1−t2

, t ∈ (t2, 1),and
θ(x) =

{

3
π − 0.5, x ∈ (0, π/2),

2.5 − 3
π , x ∈ (π/2, π).The adjoint state is onstruted by the ansatz p = φ(t)v(x). To this aim, let

φ(t) =

{

− sin2 ( π
t2−t1

(t − t1)), t ∈ (t1, t2),

0 else.The derivative of φ is given by the ontinuous funtion
φ

′

(t) =

{

− 2π
t2−t1

cos
(

( π
t2−t1

)(t − t1)
)

sin
(

π
t2−t1

(t − t1)
)

, t ∈ (t1, t2)

0 else.Moreover, we introdue the ontinuous pieewise linear funtion
v(x) =

{

2
π x x ∈ [0, π

2 ]

2 − 2
π x x ∈ [π

2 , π].The seond derivative of v(x) with respet to x is a multiple of the Dira measureonentrated at π/2:
vxx = − 4

π
δπ

2
.The adjoint equation gives

−pt − pxx = −µ + yQ,so we an set
µ = φ(t)vxx = −φ(t)

4

π
δπ

2
≥ 0and

yQ = −φ
′

(t)v(x).



28Obviously, µ and y − ya ful�ll the omplementary slakness onditions
∫∫

Q

(y − ya) dµ(x, t) = 0,

y − ya ≥ 0 a.e. in Q, µ ≥ 0.Having the exat optimal solutions, we are able to on�rm the onvergene ratesfor uµ as µ → 0. We �x κ = 10−2, ε = 10−6, σ = 0.8, µ0 = 10−3, and eps = 10−5.Figures 4 and 5 show the numerial solutions.

(a) optimal ontrol (b) optimal stateFigure 4. Solutions to Example 2, ontrol and state.

(a) adjoint state (b) Lagrange multiplierFigure 5. Solutions to Example 2, adjoint and approximation onthe multiplier.With the given exat solutions of the unregularized problem and our hoie of
ε, we observe linear onvergene in u and y. Notie that ε is very small omparedwith the expeted disretization error and also ompared with µ. Therefore, it isreasonable to onsider the distane to the exat solution at ε = 0 rather than tothe one orresponding to ε = 10−6. Figure 6() shows the value of the objetivefuntion Jµ.
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(a) relative error ‖uµ − ū‖/‖ū‖
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(b) relative error ‖yµ − ȳ‖/‖ȳ‖

10
−4

10
−3

10
−2

5.8

6

6.2

6.4

6.6

6.8

7

7.2

µ

J(
y,

u;
µ)

() value of the objetive funtion JµFigure 6. Convergene for µ → 10−4. µ-axis saled logarithmially.In Table 1, we present the errors of the solutions and the value of the objetivefuntion for Example 2 for seleted values of µ.
µ ‖yµ − ȳ‖/‖ȳ‖ ‖uµ − ū‖/‖ū‖ ‖pµ − ū‖/‖p̄‖ J(y, u; µ)

8.0−2 2.2954 4.3332−1 4.3332−1 7.3130
4.3980−3 1.7467−2 2.9738−2 2.9738−2 6.1299
7.3787−4 3.8415−2 6.6231−3 6.6234−3 6.1211
3.0223−4 2.0936−2 4.0684−3 4.0685−3 6.1204
9.9035−5 1.3354−2 3.1801−3 3.1799−3 6.1202Table 1. Relative errors in y, u, and p , and values of J(y, u)depending on µ.
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