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Abstract. Optimal sparse control problems are considered for the FitzHugh-Nagumo system
including the so-called Schlögl model. The non-differentiable objective functional of tracking type
includes a quadratic Tikhonov regularization term and the L1-norm of the control that accounts for
the sparsity. Though the objective functional is not differentiable, a theory of second order sufficient
optimality conditions is established for Tikhonov regularization parameter ν > 0 and also for the case
ν = 0. In this context, also local minima are discussed that are strong in the sense of the calculus
of variations. The second order conditions are used as main assumption for proving the stability of
locally optimal solutions with respect to ν → 0 and with respect to perturbations of the desired state
functions. The theory is confirmed by numerical examples that are resolved with high precision to
confirm that the optimal solution obeys the system of necessary optimality conditions.
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Introduction. This paper contributes to several recent developments in the op-
timal control of partial differential equations. First, and this is perhaps the main
novelty or our work, it improves the theory of second order sufficient optimality con-
ditions for the optimal control of nonlinear evolution equations. We prove results
that are not only new for the control of the FitzHugh-Nagumo equations. They are
also not yet known for the optimal control theory of standard academic semilinear
elliptic or parabolic control problems with smooth objective functionals. We even
go beyond this and consider problems with non-smooth functionals in the context of
sparse optimal control, where the L1-norm of the control appears in the objective
functional.

Our control system of FitzHugh-Nagumo equations plays an important role in
physics, chemistry, and mathematical biology. Here, we continue our research in [8] on
the optimal control of wave-type solutions such as travelling waves or spiral waves that
appear as typical solutions of this system in unbounded spatial domains. Investigating
this class of control problems with its interesting applications, we observed numerical
effects that we wanted to confirm by a deeper mathematical analysis. Eventually,
we arrived at novel second order conditions that we needed to explain our numerical
observations that are examplarily presented at the end of this paper.

Let us detail our main achievements in the theory of second-order sufficient opti-
mality conditions a bit more:

Second order conditions are related to certain critical cones that must be chosen
as small as possible. For sparse controls, in Lemma 3.1-3 we introduce the cone of
critical directions Cūν

that is smaller than the associated one suggested in [7]. In this
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way, we improve the results of [7] that were developed for a simple class of elliptic
equations. Even for this class of simpler problems, our result is new.

Moreover, our paper contains second-order conditions that are sufficient for strong
local minima in the sense of calculus of variations. So far, almost all contributions
to the theory of second-order conditions in the optimal control of PDEs addressed
weak local minima. To our best knowledge, the first result on strong local minima in
PDE control was recently obtained in [1] for the case of semilinear elliptic equations.
Although our results are similar to the ones of [1], they are more general, even if they
are transferred to the elliptic case discussed there. In particular, we introduce two
extended cones of critical directions, Cτū in (3.14) and Eτū prior to Theorem 3.13. They
can be used to deal with the case of vanishing Tikhonov regularization parameter ν,
cf. more detailed remarks in the introduction to Section 3. We do not know papers
on the control of PDEs that deal with strong local minima for the case ν = 0.

The case ν = 0 is important for the numerical application of control methods to
the FitzHugh-Nagumo equations that we present in the last section. In our preceding
paper [8], we observed that the numerical methods worked fairly stable also for very
small parameter ν > 0 so that we became interested in the convergence analysis as
ν → 0. To prove the observed stability of optimal controls for ν → 0, we had to
develop our new second order conditions that are applicable to the case ν = 0. This
is a situation, where strong local minima are needed. We also discuss the stability of
optimal solutions with respect to perturbations of the given desired state functions.

Compared with standard semilinear elliptic or parabolic equations, the analysis
of the FitzHugh-Nagumo system is more difficult. Therefore, we have to prove the
fairly technical Lemmata 3.8–3.11. Although these results do not directly extend the
optimal control theory, their detailed proofs are unavoidable to build our theory and
occupy a major part of our paper.

The analysis of optimal control problems for FitzHugh-Nagumo systems was al-
ready considered in [3], who investigated associated problems by the Dubovitskij-
Milyutin optimality conditions and in [13], who concentrated on the analysis of time-
optimal control problems for a linear version of the FitzHugh-Nagumo equations.
Later, resolving certain obstacles in the analysis of differentiability, in [8] we proved
the first-order optimality conditions for the (nonlinear) FitzHugh-Nagumo equations
by showing the differentiability of the control-to-state mapping of any order. More-
over, we reported on a variety of computational results. In this context, we also
mention [4], where the analysis and numerical treatment of optimal control problems
for traveling wave fronts is discussed for the so-called Schlögl model (also known as
Nagumo equation).

The discussion of control and feedback control problems of reaction-diffusion equa-
tions has a long tradition in the community of theoretical physics. We mention, for
instance, contributions in [15], [17], [20] and the references therein. We also refer to
the survey volume by [16]. Our investigations on the control of FitzHugh-Nagumo
equations and systems of related type were initiated by these ideas.

1. Control problem. Assumptions and preliminary results. In this pa-
per, we consider optimal control problems for the following two reaction-diffusion
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equations:
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∂y

∂t
(x, t)−∆y(x, t) +R(y(x, t)) + α z(x, t) = u(x, t) in Q

∂ny(x, t) = 0 on Σ

y(x, 0) = y0(x) in Ω

∂z

∂t
(x, t) + β z(x, t)− γ y(x, t) + δ = 0 in Q

z(x, 0) = z0(x) in Ω.

(1.1)

Here, Ω ⊂ R
N , 1 ≤ N ≤ 3, is a bounded Lipschitz domain with boundary Γ; T > 0,

Q = Ω× (0, T ), and Σ = Γ× (0, T ). The parameters α, β, γ, and δ are real numbers
with β ≥ 0. Further, R is a cubic polynomial,

R(y) = aR (y − y1)(y − y2)(y − y3)

with real numbers aR > 0 and y1 ≤ y2 ≤ y3. Moreover, y0 and z0 are given initial
states belonging to L∞(Ω). By n and ∂n, we denote the outward unit normal vector
and the associated outward normal derivative on Γ, respectively.

In this system, the partial differential equation for y is said to be the activator
equation, while the one for z is called the inhibitor equation. The function y is the
state that is to be controlled. In our paper, the inhibitor z has only some auxiliary
character with respect to the control. For the choice α = 0, both equations decouple
and the state function y has to solve the Schlögl equation. We should mention that
this equation is also known as Nagumo equation and it is also a particular case of
the Allan-Cahn equation. Here, the inhibitor equation is meaningless. For α = 1, the
FitzHugh-Nagumo system is obtained. These values α ∈ {0, 1} are the values of our
interest, but the analysis for the system (1.1) is the same for any arbitrary real α.

Following the usual notation we set

W (0, T ) =

{

y ∈ L2(0, T ;H1(Ω)) :
∂y

∂t
∈ L2(0, T ;H1(Ω)∗)

}

.

The following theorem was proved in [8, Theorem 2.1 and Corollary 2.1].

Theorem 1.1. Under the previous assumptions, for all u ∈ Lp(Q) with p > 5/2,
the equation (1.1) has a unique solution (yu, zu) ∈ [W (0, T ) ∩ L∞(Q)]2. There exists
a constant C independent of u such that

‖yu‖L∞(Q) + ‖yu‖W (0,T ) + ‖zu‖L∞(Q) + ‖zu‖W (0,T )

≤ C(‖u‖Lp(Q) + ‖y0‖L∞(Ω) + ‖z0‖L∞(Ω) + |R(0)|)

and we have (yu, zu) ∈ C(Ω̄× (0, T ])2. In addition, if y0 and z0 are continuous in Ω̄,
then yu and zu belong to C(Ω̄× [0, T ]).

Following again [8], we introduce the mapping G : Lp(Q) −→ [W (0, T )∩L∞(Q)]2,
defined by G(u) = (yu, zu). Then, the following differentiability properties were
proved in [8, Theorem 2.2].

Theorem 1.2 (Differentiability of the control-to-state mapping). The mapping
G is of class C2. The derivative (ηv, ζv) := G′(u)v is equal to the pair (η, ζ) solving
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the system
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∂η

∂t
−∆η +R′(yu)η + α ζ = v in Q

∂nη = 0 on Σ

η(x, 0) = 0 in Ω

∂ζ

∂t
+ β ζ − γ η = 0 in Q

ζ(x, 0) = 0 in Ω.

(1.2)

The second derivative (ωv1,v2 , χv1,v2) := G′′(u)[v1, v2] in the directions v1, v2 ∈ Lp(Q)
is given by the pair (ω, χ) solving the equation
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∂ω

∂t
−∆ω +R′(yu)ω + αχ = −R′′(yu) ηv1ηv2 in Q

∂nω = 0 on Σ

ω(x, 0) = 0 in Ω

∂χ

∂t
+ β χ− γ ω = 0 in Q

χ(x, 0) = 0 in Ω,

(1.3)

where ηvi = G′(u)vi, i = 1, 2.
Remark 1.3. Though G is not a differentiable function from L2(Q) to W (0, T )2,

it is not difficult to check that G′(u) and G′′(u) can be extended to continuous linear
and bilinear mappings from L2(Q) to W (0, T )2, for any u ∈ Lp(Q) with p > 5

2 .
Now, we formulate our control problem

(Pν)

{

Min Jν(u),
u ∈ Uad

where Jν(u) = Fν(u) + κj(u) with

Fν(u)=
1

2

∫

Q

{CYQ (x, t)(yu(x, t) − yQ(x, t))
2 + CZQ(x, t)(zu(x, t)− zQ(x, t))

2} dx dt

+
1

2

∫

Ω

{CYT (x)(yu(x, T )− yT (x))
2 + CZT (x)(zu(x, T )− zT (x))

2} dx

+
ν

2

∫

Q

u2(x, t) dx dt,

j(u) =

∫

Q

|u(x, t)| dx dt.

In this setting, we have given constants ν ≥ 0, κ > 0, coefficients CYQ , C
Z
Q ∈ L∞(Q),

CYT , C
Z
T ∈ L∞(Ω), desired state functions yQ, zQ ∈ Lp(Q) with p > 5/2, yT , zT ∈

L∞(Ω), and the set of admissible controls

Uad = {u ∈ L∞(Q) : a ≤ u(x, t) ≤ b for a.a. (x, t) ∈ Q}

with −∞ < a < 0 < b < +∞. For the choice α = 0 in the state equation (1.1), we
fix CZQ = zQ = 0 and CZT = zT = 0. We also assume that the functions CYQ , CZQ , C

Y
T

and CZT are nonnegative.
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Remark 1.4. We introduced fairly general coefficients in the objective functional
Fν . The reason for that are fairly different applications we have in mind. For instance,
in [8] we considered the problem of extinguishing a moving spiral wave. To do so, we
observed only the tip of the desired spiral wave that moved from the center to the
boundary of the domain Ω. Here, CYQ was the characteristic function of a circle
around the tip that moved with the tip through Ω. We also mention that our theory
works under the slightly weaker assumption yT , zT ∈ Lp(Ω), too. However, this would
lead to more technicalities, hence we do not use this assumption.

Thanks to Theorems 1.1 and 1.2, it is easy to prove that for all ν ≥ 0 the control
problem (Pν) has at least one solution ūν ; see [8, Theorem 3.1].

We finish this section by analyzing the cost functional Jν that consists of two
terms having different smoothness. While the first part is smooth, the second part, j :
L1(Q) −→ R, is not a differentiable functional, but it is a Lipschitz convex functional.
It admits directional derivatives given by the formula

j′(u; v) =

∫

Q+

v(x, t) dx dt−
∫

Q−

v(x, t) dx dt +

∫

Q0

|v(x, t)| dx dt ∀u, v ∈ L1(Q),

(1.4)
where

Q+ = {(x, t) ∈ Q : u(x, t) > 0}, Q−{(x, t) ∈ Q : u(x, t) < 0},

Q0 = {(x, t) ∈ Q : u(x, t) = 0}.

Of course, the relations defining these sets are required only almost everywhere. More-
over, we know that a measurable function λ belongs to the subdifferential in the sense
of the convex analysis of j at a point u, λ ∈ ∂j(u), if and only if it satisfies for a.a.
(x, t) ∈ Q

λ(x, t)







= +1 if u(x, t) > 0
= −1 if u(x, t) < 0

∈ [−1,+1] if u(x, t) = 0.

For every 0 < ρ < 1 we have

j(v)− j(u) ≥ j(u+ ρ(v − u))− j(u)

ρ
≥ j′(u; v−u) = max

λ∈∂j(u)

∫

Q

λ(v−u) dx dt. (1.5)

These inequalities are valid for any convex and locally Lipschitz functional j; see for
instance [2].

The first part of Jν has the following differentiability properties.
Theorem 1.5. The function Fν : Lp(Q) −→ R, p > 5/2, is of class C2, and we

have the following expressions for the first and second derivatives

F ′
ν(u)v =

∫

Q

(ϕu + νu)v dxdt ∀u, v ∈ Lp(Q), (1.6)

and for v1, v2 ∈ Lp(Q)

F ′′
ν (u)[v1, v2]=

∫

Q

{

[CYQ −R′′(yu)ϕu]ηv1ηv2 + CZQζv1ζv2
}

dx dt

+

∫

Ω

{

CYT ηv1(T )ηv2(T ) + CZT ζv1(T )ζv2(T )
}

dx+ ν

∫

Q

v1v2 dx dt, (1.7)
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where ϕu along with ψu are the solutions in W (0, T ) ∩ L∞(Q) of the adjoint system
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
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









−∂ϕu
∂t

−∆ϕu +R′(yu)ϕu + αψu = CYQ (yu − yQ) in Q

∂nϕu = 0 on Σ

ϕu(x, T ) = CYT (yu(T )− yT ) in Ω

−∂ψu
∂t

+ β ψu − γ ϕu = CZQ(zu − zQ) in Q

ψu(x, 0) = CZT (zu(T )− zT ) in Ω.

(1.8)

The proof of the existence and uniqueness of the solution (ϕu, ψu) ∈ [W (0, T ) ∩
L∞(Q)]2 of the adjoint system and the formula (1.6) can be found in [8, §3.2]. The
expression of the second derivative follows from the chain rule, (1.3), and (1.8).

2. First-Order Optimality Conditions. Since the control problem (Pν) is
not convex, we must consider local minima. In this section, the goal is to set up the
first-order necessary optimality conditions satisfied by the local minima and to draw
some conclusions from the optimality system. We say that ūν is a local minimum of
problem (Pν) in the Lp(Q) sense, 1 ≤ p ≤ +∞, if there exists ε > 0 such that

Jν(ūν) ≤ Jν(u) ∀u ∈ Uad ∩Bε(ūν),

where Bε(ūν) denotes the Lp(Q)-ball centered at ūν with radius ε. Let us mention
that the boundedness of Uad in L∞(Q) implies that ūν is a local minimum in the L2(Q)
sense if and only if it is a local minimum in the Lp(Q) sense for any 1 ≤ p < +∞.
On the other hand, if ūν is a local minimum in the L∞(Q) sense, then it is a local
minimum in the Lp(Q) sense for any 1 ≤ p ≤ +∞. Hereafter, local minima will be
always understood as local minima in the L2(Q) sense.

Remark 2.1. Minima of this type are, viewed in the sense of calculus of variations,
weak local minima. They ensure optimality in a neighborhood of the locally optimal
control ūν . Later, we will also investigate conditions for local minima that are strong
in the sense of calculus of variations. In that case, we have

Jν(ūν) ≤ Jν(u) ∀u ∈ Uad such that ‖yu − yūν
‖L∞(Q) < ε.

no matter how far u is from ūν .

Now we state the optimality conditions satisfied by a local minimum of (Pν).

Theorem 2.2. Let ūν be a local minimum of (Pν). Then, there exist (ȳν , z̄ν)
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and (ϕ̄ν , ψ̄ν) in [W (0, T ) ∩ L∞(Q)]2, and λ̄ν ∈ ∂j(ūν) such that







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



























∂ȳν
∂t

−∆ȳν +R(ȳν) + α z̄ν = ūν in Q

∂nȳν = 0 on Σ

ȳν(x, 0) = y0(x) in Ω

∂z̄ν
∂t

+ β z̄ν − γ ȳν + δ = 0 in Q

z̄ν(x, 0) = z0(x) in Ω,

(2.1)



































−∂ϕ̄ν
∂t

−∆ϕ̄ν +R′(yu) ϕ̄ν + α ψ̄ν = CYQ (ȳν − yQ) in Q

∂nϕ̄ν = 0 on Σ

ϕ̄ν(x, T ) = CYT (ȳν(T )− yT ) in Ω

−∂ψ̄ν
∂t

+ β ψ̄ν − γ ϕ̄ν = CZQ(z̄ν − zq) in Q

ψ̄ν(x, 0) = CZT (z̄ν(T )− ZT ) in Ω,

(2.2)

∫

Q

(ϕ̄ν + νūν + κλ̄ν)(u − ūν) dx dt ≥ 0 ∀u ∈ Uad. (2.3)

Proof. Let ε > 0 such that Jν(ūν) ≤ Jν(u) for every u ∈ Uad ∩Bε(ūν). Then, for
any u ∈ Uad, u 6= ūν , and for all 0 < ρ < ε/‖u−ūν‖L2(Q), we have that ūν+ρ(u−ūν) ∈
Uad ∩Bε(ūν). Hence, using the convexity of j, we get

0 ≤ Jν(ūν + ρ(u− ūν))− Jν(ūν)

ρ
≤ Fν(ūν + ρ(u − ūν))− Fν(ūν)

ρ
+ κj(u)− κj(ūν).

Now, passing to the limit ρ→ 0, we infer

F ′
ν(ūν)(u − ūν) + κj(u)− κj(ūν) ≥ 0. (2.4)

Taking (ȳν , z̄ν) and (ϕ̄ν , ψ̄ν) as the solutions of (2.1) and (2.2), respectively, and using
the expression (1.6) of the derivative of Fν , we deduce from the above inequality that

∫

Q

(ϕ̄ν + νūν)(u − ūν) dx dt+ κj(u)− κj(ūν) ≥ 0 ∀u ∈ Uad.

Therefore, ūν solves the convex optimization problem

{

Min
∫

Q(ϕ̄ν + νūν)u dx dt + κj(u)

u ∈ Uad

that can be considered in L1(Ω). Finally, from rules of subdifferential calculus we
deduce the existence of λ̄ν ∈ ∂j(ūν) such that (2.3) holds.

From inequality (2.3), we deduce some interesting relations.
Corollary 2.3. Let ūν , ϕ̄ν , and λ̄ν be as in Theorem 2.2, and assume that

ν > 0. Then the following relations hold






















ūν(x, t) = 0 ⇔ |ϕ̄ν(x, t)| ≤ κ,

ūν(x, t) = Proj[a,b]

(

− 1

ν
[ϕ̄ν(x, t) + κλ̄ν(x, t)]

)

,

λ̄ν(x, t) = Proj[−1,+1]

(

− 1

κ
ϕ̄ν(x, t)

)

.
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Moreover, from the last two representation formulas it follows that λ̄ν is unique and
ūν , λ̄ν ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q).

Corollary 2.4. Let ūν, ϕ̄ν and λ̄ν be as in Theorem 2.2 and assume that ν = 0.
Then the following relations are satisfied



































|ϕ̄ν(x, t)| < κ⇒ ūν(x, t) = 0,
ϕ̄ν(x, t) > +κ⇒ ūν(x, t) = a,
ϕ̄ν(x, t) < −κ⇒ ūν(x, t) = b,
ϕ̄ν(x, t) = +κ⇒ ūν(x, t) ≤ 0,
ϕ̄ν(x, t) = −κ⇒ ūν(x, t) ≥ 0,

λ̄ν(x, t) = Proj[−1,+1]

(

− 1

κ
ϕ̄ν(x, t)

)

.

The last representation formula yields that λ̄ν ∈ L2(0, T ;H1(Ω)) ∩ L∞(Q) and λ̄ν is
unique for a fixed local minimum ūν.

For the proofs of these relations, the reader is referred to [7, Corollary 3.2] and
[6, Theorem 3.1] that deal with the cases ν > 0 and ν = 0, respectively, in a similar
situation. The relations in the corollary show that local minima ūν can be zero in
large regions, the support of ūν being monitored by κ.

In particular, a value κ0 < ∞ exists such that for κ > κ0 we have only one
local minimum, namely ūν = 0. Indeed, since Uad is bounded in L∞(Q), the set
{(yu, zu)}u∈Uad

is bounded in L∞(Q), and hence from (1.8) we deduce that the set
{(ϕu, ψu)}u∈Uad

is also bounded in L∞(Q). Then, our statement holds obviously for

κ0 = sup{‖ϕu‖L∞(Q) : u ∈ Uad}.

In the case ν = 0, the control ūν can admit values outside of {a, 0, b} on a set of
positive measure only if the set {(x, t) ∈ Q : |ϕ̄ν(x, t)| = κ} has a positive Lebesgue
measure. If the measure of this set is zero then ūν(x, t) must belong to {a, 0, b} for
almost every (x, t) ∈ Q. Such optimal controls ūν(x, t) are of ”bang-bang-bang” type.

3. Second Order Optimality Conditions. In this section, we carry out the
second order analysis for (Pν). First, we establish second order necessary conditions.
Distinguishing between the cases ν > 0 and ν = 0, we consider sufficient conditions.
The reader might be surprised how different both cases can be.

Let us give at this point a short orientation on the second order conditions. To
deal with the different situations depending on ν, we will introduce three different
cones of critical directions, namely the cone Cū and the cones Cτū and Eτū. The cone
Cū is quite standard and well known. It will be used in the case ν > 0. In Thm. 3.4
we prove that sufficient second order conditions based upon Cū ensure (weak) local
optimality. However, we show just as a corollary that then ūν yields even a strong
local minimum.

The two other cones are needed for the case ν = 0. The second order conditions
based on Eτū imply that ū is a strong local minimum in the sense of calculus of varia-
tions, cf. Theorem 3.13 and relation (3.38). This property of strong local optimality
cannot be deduced, if we replace Eτū by Cτū .

Section 4 is devoted to the stability of locally optimal solutions with respect to
perburbations. For ν > 0 the cone Cτū can be used to show Lipschitz stability of
optimal controls cf. Theorem 4.2. Here, weak local minima are useful.

In §4.1.2, we discuss the stability of locally optimal solutions for ν = 0. Here, we
invoke the second-order conditions based on Eτū and prove the stability of the optimal
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states with respect to perturbations of the desired state. Now, stability can be proved
only if ū is a strong minimum. For weak minima we cannot prove this property.

We should mention that this strong minimum property would also be needed if
we want to prove error estimates for the optimal states when the control problem is
discretized. Indeed, we only have weak convergence of the optimal discrete controls to
the continuous ones, but the corresponding states have strong convergence properties,
which allows the use of the sufficient second order condition.

3.1. The case ν > 0. First, we introduce a cone of critical directions associated
with a control ūν ∈ Uad satisfying the optimality system (2.1)-(2.3) along with the
state (ȳν , z̄ν) and the adjoint state (ϕ̄ν , ψ̄ν). This cone is an extension of the analogous
one for finite dimensional optimization problems to the infinite-dimensional case,

Cūν
= {v ∈ L2(Q) : v satisfies the sign conditions (3.1) andF ′

ν(ūν)v+κj
′(ūν ; v) = 0},

v(x, t)

{

≥ 0 if ūν(x, t) = a,
≤ 0 if ūν(x, t) = b.

(3.1)

The next proposition establishes some properties of Cūν
.

Lemma 3.1.
1 – If v ∈ L2(Q) satisfies (3.1), then (ϕ̄ν + νūν + κλ̄ν)v ≥ 0 a.e. in Q.
2 – If v ∈ Cūν

, then

(ϕ̄ν + νūν + κλ̄ν)v = 0, (3.2)

∫

Q0

|v| dx dt =
∫

Q0

λ̄νv dx dt ⇒ v(x, t)







= 0 if |λ̄ν(x, t)| < 1,
≥ 0 if λ̄ν(x, t) = +1,
≤ 0 if λ̄ν(x, t) = −1,

(3.3)

where Q0 = {(x, t) ∈ Q : ūν(x, t) = 0}.
3 – An element v ∈ L2(Q) belongs to Cūν

if and only if the following properties hold

v(x, t)







= 0 if |ϕ̄ν(x, t) + νūν(x, t)| 6= κ,
≥ 0 if ūν(x, t) = a or (ϕ̄ν(x, t) = −κ and ūν(x, t) = 0),
≤ 0 if ūν(x, t) = b or (ϕ̄ν(x, t) = +κ and ūν(x, t) = 0).

(3.4)

is fulfilled.
Proof. (1) The first statement is an immediate consequence of Corollary 2.3.

Indeed, if (ϕ̄ν + νūν + κλ̄ν)(x, t) > 0, then ūν(x, t) > − 1
ν (ϕ̄ν + κλ̄ν)(x, t) holds.

According to the representation formula for ūν , this inequality is possible only if
ūν(x, t) = a. Then (3.1) implies that v(x, t) ≥ 0. Analogously, we proceed when
(ϕ̄ν + νūν + κλ̄ν)(x, t) < 0.

(2) If v ∈ Cūν
, then the identity F ′(ūν)v + κj′(ūν ; v) = 0 holds. Hence, we have

with (1)

0 ≤
∫

Q

(ϕ̄ν + νūν + κλ̄ν)v dx dt ≤
∫

Q

(ϕ̄ν + νūν)v dx dt+ κj′(ūν ; v) = 0.

Using again (1), we deduce (3.2) and

∫

Q

λ̄νv dx dt = j′(ūν ; v).
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Then the formula (1.4) for j′(ūν ; v) and this identity imply (3.3).
(3) First, we assume that v ∈ Cūν

. Then v satisfies (3.1) and we have to discuss
3 cases in (3.4).

– If ϕ̄ν(x, t) = +κ and ūν(x, t) = 0, then Corollary 2.3 implies that λ̄ν(x, t) = −1.
This identity along with ūν(x, t) = 0 and (3.3) yields v(x, t) ≤ 0.

– Analogously, we prove that v(x, t) ≥ 0 if ϕ̄ν(x, t) = −κ and ūν(x, t) = 0.
– Let us now analyze the case |ϕ̄ν(x, t) + νūν(x, t)| 6= κ. We distinguish between

two situations. In the first, we suppose that |ϕ̄ν(x, t)+ νūν(x, t)| > κ. Since |λ̄ν | ≤ 1,
we infer that ϕ̄ν + νūν + κλ̄ν 6= 0; hence (3.2) implies that v(x, t) = 0.

In the other case, we assume that |ϕ̄ν(x, t) + νūν(x, t)| < κ. If ūν(x, t) 6= 0, then
|λ̄ν(x, t)| = 1 and consequently ϕ̄ν + νūν + κλ̄ν 6= 0. Once again, (3.2) implies that
v(x, t) = 0. Finally, we assume in this second case that ūν(x, t) = 0 and |ϕ̄ν(x, t)| < κ.
Then λ̄ν(x, t)| < 1 and (3.3) leads to v(x, t) = 0.

Second, we consider an element v ∈ L2(Q) satisfying (3.4). Then v obeys (3.1)
and it remains to prove that F ′(ūν)v + κj′(ūν ; v) = 0. The equality

∫

Q0

|v| dx dt =
∫

Q0

λ̄νv dx dt

is a consequence of (3.4) and the projection formula for λ̄ν given in Corollary 2.3.
Therefore, the identity (λ̄ν , v) = j′(ūν ; v) holds and consequently we have

∫

Q

(ϕ̄ν + νūν + κλ̄ν)v dx dt = F ′
ν(ūν)v + κj′(ūν ; v).

If (ϕ̄ν+νūν+κλ̄ν)(x, t) > 0, then ūν(x, t) > − 1
ν (ϕ̄ν+κλ̄ν)(x, t). From this inequality

and the projection formula for ūν established in Corollary 2.3, we infer that ūν(x, t) =
a, hence λ̄ν(x, t) = −1 and (ϕ̄ν + νūν)(x, t) > κ. Then, (3.4) implies that v(x, t) = 0.
Analogously, we deduce that v(x, t) = 0 if (ϕ̄ν + νūν + κλ̄ν)(x, t) < 0. From these
properties and the above identity we deduce that F ′(ūν)v + κj′(ūν ; v) = 0.

The proof of the following theorem follows the lines of the proofs of Proposition
3.4 and Theorem 3.7 of [7] with obvious modifications.

Theorem 3.2. The set Cūν
is a convex and closed cone in L2(Q). Furthermore,

if ūν is a local minimum for (Pν), then F
′′
ν (ūν)v

2 ≥ 0 ∀v ∈ Cūν
.

The reader should observe that the contribution of the term j(u) in the second
order optimality conditions is through the critical cone Cūν

, but only F ′′
ν (ūν)v

2 is
involved in the second order approximation. In some sense, j is piecewise linear and
there is no second order contribution from it. Next we consider the sufficient second
order conditions.

Let us now start the second order analysis. The presence of the so-called Tikhonov
term ν

2‖u‖2L2(Q) in the cost functional is extremely important. Due to this term, the
second order sufficient conditions for the local optimality of ūν are a straightforward
extension of the corresponding conditions for a finite dimensional optimization prob-
lem. Actually, it is well known that the equivalence stated in the following theorem is
not in general true for infinite-dimensional optimization problems. However, it works
perfectly in this case because of the presence of the Tikhonov term.

Theorem 3.3. The following statements are equivalent
1. F ′′

ν (ūν)v
2 > 0 ∀v ∈ Cūν

\ {0}.
2. There exists σ > 0 such that

F ′′
ν (ūν)v

2 ≥ σ‖v‖2L2(Q) ∀v ∈ Cūν
. (3.5)
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We omit the proof of this result, because it was proved for a certain class of
parabolic partial differential equations in [9, Th. 4.11]. For the FitzHugh-Nagumo
system, the situation is slightly more involved, but the extension of the proof in [9]
to this system is more or less straightforward.

Finally, we are able to prove the following result.
Theorem 3.4. Let ūν ∈ Uad satisfy the optimality system (2.1)-(2.3) along with

the state (ȳν , z̄ν) and the adjoint state (ϕ̄ν , ψ̄ν). We also assume that F ′′
ν (ūν)v

2 > 0
∀v ∈ Cūν

\ {0}. Then, there exist δ > 0 and ε > 0 such that

Jν(ūν) +
δ

2
‖u− ūν‖2L2(Q) ≤ Jν(u) ∀u ∈ Uad ∩Bε(ūν), (3.6)

where Bε(ūν) is the L2(Q) ball centered at ūν with radius ε.
Proof. This proof follows the classical one that is performed by contradiction.

The only difference to take into account is the non-differentiable term j involved in
the cost functional and in the definition of the cone of critical directions. Let us sketch
some details of the proof. Arguing by contradiction, we assume that there exists a
sequence {uk}∞k=1 ⊂ Uad such that

‖uk − ūν‖L2(Q) <
1

k
and Jν(uk) < Jν(ūν) +

1

2k
‖uk − ūν‖2L2(Q) ∀k ≥ 1. (3.7)

Now, we take

ρk = ‖uk − ūν‖L2(Q), vk =
1

ρk
(uk − ūν), hence ‖vk‖L2(Q) = 1 and vk ⇀ v in L2(Q),

(3.8)
the last convergence after possibly selecting a subsequence of {vk}∞k=1. The proof is
split into three parts.

(i) v ∈ Cūν
. Since every vk satisfies the sign conditions of the definition of Cūν

,
we deduce that v also satisfies them. Let us prove that F ′

ν(ūν)v + κj′ν(ūν ; v) = 0.
From (1.5) and (2.3) we get that

F ′
ν(ūν)v + κj′(ūν ; v) ≥ F ′

ν(ūν)v + κ

∫

Q

λ̄νv dx dt

= lim
k→∞

1

ρk

∫

Q

(ϕ̄ν + νūν + κλν)(uk − ū) dx dt ≥ 0.

To prove the converse inequality, we apply the mean value theorem and use (3.7),

Fν(ūν) + ρkF
′
ν(ūν + θkρkvk)vk + κj(ūν + ρkvk) < Fν(ūν) + κj(ūν) +

ρ2k
2k

with some 0 ≤ θk ≤ 1. Therefore, with (1.5) we obtain from above

ρk{F ′
ν(ūν + θk(uk − ūν))vk + κj′(ūν ; vk)} <

ρ2k
2k
.

Now by convexity and continuity of the mapping L1(Q) ∋ v 7→ j(ūν ; v), we get

F ′
ν(ūν)v+κj

′
ν(ūν ; v) = lim inf

k→∞
{F ′

ν(ūν+θk(uk− ūν))vk+κj′ν(ūν ; vk)} ≤ lim inf
k→∞

ρk
2k

= 0.
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Here, we have used that Fν : Lp(Q) −→ R is of class C2 for p > 5/2 and uk → ūν
strongly in Lq(Q) for all q <∞.

(ii) v = 0. Performing a Taylor expansion and using (3.7) again, we find

Fν(ūν)+ρkF
′
ν(ūν)vk+

ρ2k
2
F ′′
ν (ūν+θkρkvk)v

2
k+κj(ūν+ρkvk) < Fν(ūν)+κj(ūν)+

ρ2k
2k
.

From (1.5), we obtain

ρk{F ′
ν(ūν)vk + κj′(ūν ; vk)}+

ρ2k
2
F ′′
ν (ūν + θk(uk − ūν))v

2
k <

ρ2k
2k
.

Invoking (1.5) and (2.3) we deduce that F ′
ν(ūν)vk + κj′(ūν ; vk) ≥ 0, then F ′′

ν (ūν +
θk(uk − ūν))v

2
k <

1
2k . Thanks to the expression of F ′′

ν given in (1.7), it is easy to
pass to the limit with the aid of the compactness of the linear operator L2(Q) ∋
v 7→ (ηv, ζv) ∈ L2(Q)2 and L2(Q) ∋ v 7→ (ηv(T ), ζv(T )) ∈ L2(Ω)2 to deduce that
F ′′
ν (ūν)v

2 ≤ 0. In view of the assumptions of the theorem, since v ∈ Cūν
, this is

possible only if v = 0.
(iii) Contradiction. Since vk ⇀ 0 in L2(Q), it holds (ηvk , ζvk)⇀ (0, 0) inW (0, T ).

Hence all the terms in F ′′(ūν)v
2
k tend to zero except the Tikhonov term ‖vk‖2L2(Q) = 1.

Thus, we have ν ≤ lim infk→∞ F ′′
ν (ūν)v

2
k = 0.

Now we prove the surprising fact that the local optimality ensured by Theorem
3.4 is even strong.

Corollary 3.5. Let ūν satisfy the assumptions of Theorem 3.4. Then, there
exist δ′ > 0 and ε′ > 0 such that

Jν(ūν) +
δ′

2
‖u− ūν‖2L2(Q) ≤ Jν(u) ∀u ∈ Uad : ‖yu − ȳν‖L∞(Q) < ε′. (3.9)

Proof. Let us assume that (3.9) does not hold for any δ′ and ε′. Then, for any
integer k ≥ 1, we can find a control uk ∈ Uad with ‖yuk

− ȳν‖L∞(Q) < 1/k such that

Jν(uk) < Jν(ūν) +
1

2k
‖uk − ūν‖2L2(Q). (3.10)

We can take a subsequence, denoted in the same way, such that {uk}k≥1 is weakly
convergent in L2(Q). Since yuk

→ ȳν in L∞(Q), we deduce that uk ⇀ ūν in L2(Q).
Indeed, from the boundedness of {uk}k≥1 in L∞(Q) and Theorem 1.1 we infer the
boundedness of {(yk, zk)}k≥1 in W (0, T ). Therefore, taking again a subsequence if
necessary, we can assume the weak convergence of {(yk, zk)}k≥1 in W (0, T ) and of
{uk}k≥1 in L

p(Q) for every p < +∞. The weak limit of {yk}k≥1 is obviously ȳν . From
the state equation satisfied by the functions zk we deduce that zk ⇀ z̄ν in W (0, T ).
Finally, passing to the limit in the first equation of the system (1.1) we conclude that
uk ⇀ ūν in L2(Q). From yuk

→ ȳν in L∞(Q) and the last two equations of (1.1) we
also obtain that zuk

→ z̄ν in L∞(Q). Now, we deduce from (3.10)

ν

2
‖uk‖2L2(Q) + κj(uk) ≤

ν

2
‖ūν‖2L2(Q) + κj(ūν) +F0(ūν)−F0(uk) +

1

2k
‖uk − ūν‖2L2(Q).

Passing to the limit, we get

ν

2
‖ūν‖2L2(Q) + κj(ūν) ≤ lim inf

k→∞
{ν
2
‖uk‖2L2(Q) + κj(uk)}

≤ lim sup
k→∞

{ν
2
‖uk‖2L2(Q) + κj(uk)} ≤ ν

2
‖ūν‖2L2(Q) + κj(ūν).
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Notice that F0(uk) → F0(ūν) follows from the strong convergence of yuk
and the

circumstance that F0 does not explicitly depend on u.
This implies that ν

2‖uk‖2L2(Q) + κj(uk) → ν
2 ‖ūν‖2L2(Q) + κj(ūν). From here, we

obtain the convergence ‖uk‖L2(Q) → ‖ūν‖L2(Q). Due to the presence of the term
κj(uk), this is not completely standard and we proceed as follows:

ν

2
‖ūν‖2 ≤ lim inf

k→0

ν

2
‖uk‖2 ≤ lim sup

k→0

ν

2
‖uk‖2 = lim sup

k→0
(
ν

2
‖uk‖2 + κj(uk)− κj(uk))

≤ lim sup
k→0

(
ν

2
‖uk‖2 + κj(uk)) + κ lim sup

k→0
(−j(uk))

=
ν

2
‖ūν‖2 + κj(ūν)− κ lim inf

k→0
j(uk) ≤

ν

2
‖ūν‖2. (3.11)

Hence, we infer that uk → ūν strongly in L2(Q). Therefore, given ǫ > 0 such that
(3.6) holds, we have that ‖uk − ūν‖L2(Q) < ε for all k sufficiently large. Then (3.10)
contradicts (3.6).

3.2. The case ν = 0. In this case, we write (P) instead of (P0), J and F instead
of J0 and F0, and ū, ȳ, ϕ̄, etc., instead of ū0, ȳ0, ϕ̄0, etc. In general, for an infinite-
dimensional optimization problem, the strict positivity of the second derivative of the
functional on the critical cone is not enough for local optimality. The reader can find
an example for this fact in [12]. Therefore, we have to consider an extended cone.
Given 0 < τ < κ, we define the cone Cτū as the set of elements v ∈ L2(Q) satisfying

v(x, t)







= 0 if | |ϕ̄(x, t)| − κ| ≥ τ,
≥ 0 if ū(x, t) = a or (ϕ̄(x, t) = −κ and ū(x, t) = 0),
≤ 0 if ū(x, t) = b or (ϕ̄(x, t) = +κ and ū(x, t) = 0).

(3.12)

Proposition 3.6. The extended cone Cτū has the following properties:
1 – Cū ⊂ Cτū for all 0 < τ < κ.
2 – For every v ∈ L2(Q) satisfying the sign conditions (3.1), the inequality

F ′(ū)v + κj′(ū; v) ≥ τ‖v‖L1(Qv) (3.13)

is fulfilled, where Qv denotes the set of points (x, t) ∈ Q such that (3.12) is not
satisfied by v(x, t).

Proof. The first statement is an immediate consequence of Lemma 3.1-3. Let us
prove the second statement. If | |ϕ̄(x, t)| − κ| ≥ τ and ū(x, t) 6= 0, then |λ̄(x, t)| = 1
and the projection formula implies hence |ϕ̄(x, t)| ≥ κ. Therefore, |ϕ̄(x, t)| ≥ κ + τ
holds. If ϕ̄(x, t) ≥ κ + τ , then Corollary 2.4 implies that ū(x, t) = a and therefore
v(x, t) ≥ 0. Here, we have ϕ̄(x, t) − κ ≥ τ and hence (ϕ̄(x, t) − κ)v(x, t) ≥ τ |v(x, t)|.
Analogously, we prove that (ϕ̄(x, t) + κ)v(x, t) ≥ τ |v(x, t)|, if −ϕ̄(x, t) ≤ κ+ τ .

Now, we assume that | |ϕ̄(x, t)| − κ| ≥ τ and ū(x, t) = 0. Hence, from Corollary
2.4 we deduce that |ϕ̄(x, t)| < κ (here, |ϕ̄(x, t)| = κ is not possible) and continue by

ϕ̄(x, t)v(x, t) + κ|v(x, t)| ≥ (κ− |ϕ̄(x, t)|)|v(x, t)| ≥ τ |v(x, t)|.

Finally, we assume that |ϕ̄(x, t)| = κ and ū(x, t) = 0 . From Corollary 2.4 we get
that |λ̄(x, t)| = 1. If (x, t) 6∈ Qv, then v(x, t) satisfies the sign conditions established
in (3.12) and hence ϕ̄(x, t)v(x, t) + κ|v(x, t)| = 0. Conversely, if (x, t) ∈ Qv, then we
have that ϕ̄(x, t)v(x, t) + κ|v(x, t)| = 2κ|v(x, t| > τ |v(x, t)| .

The established inequalities prove (3.13).
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From (3.4) and (3.12) we infer that Cτū is a small relaxation of Cū when ν = 0. In
the finite dimensional case, both cones are the same for all sufficiently small τ . Now,
one might be tempted to formulate the second order sufficient conditions as

∃τ > 0 and ∃σ > 0 such that F ′′(ū)v2 ≥ σ‖v‖2L2(Q) ∀v ∈ Cτū . (3.14)

However, for ν = 0, this condition can only hold in exceptional cases as we will prove
at the end of this section. In fact, it is enough to take a look at the expression (1.7) of
F ′′(ū)v2 to understand why the condition (3.14) cannot be expected for ν = 0. The
next theorem provides the correct sufficient condition.

Theorem 3.7. Let ū ∈ Uad satisfy the optimality system (2.1)-(2.3) along with
the state (ȳ, z̄) and the adjoint state (ϕ̄, ψ̄). We also assume that

∃τ > 0 and ∃σ > 0 : F ′′(ū)v2 ≥ σ
(

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

)

∀v ∈ Cτū . (3.15)

Then, there exists ε > 0 such that

J(ū) +
σ

16

(

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

)

≤ J(u) ∀u ∈ Uad ∩Bε(ū), (3.16)

where Bε(ū) is the ball of L2(Q) centered at ū with radius ε.
Before proving this theorem, we derive some auxiliary results.
Lemma 3.8. There exist constants Ca,b, C1, C2, C3, and C∞ such that for all

u ∈ Uad we have the estimates

‖yu‖W (0,T ) + ‖yu‖L∞(Q) + ‖ϕu‖W (0,T ) + ‖ϕu‖L∞(Q) ≤ Ca,b (3.17)

‖yu − ȳ‖W (0,T ) + ‖ϕu − ϕ̄‖W (0,T ) ≤ C2‖u− ū‖L2(Q) (3.18)

‖ϕu − ϕ̄‖L∞(Q) ≤ C∞‖yu − ȳ‖L∞(Q) ≤ C3‖u− ū‖L3(Q), (3.19)

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω) ≤ C1‖v‖L3(Q)‖v‖L1(Q) ∀v ∈ L3(Q). (3.20)

Proof. The first estimate follows from Theorem 2.1 and Corollary 2.1 of [8]. To
prove the second and third estimates, we introduce the family of operators

Kµ(w)(x, t) =

∫ t

0

γe−(β+µ)(t−s)w(x, s)ds

for µ ≥ 0. Now, we take w(x, t) = e−µt(yu − ȳ)(x, t). Subtracting the equations
satisfied by yu and ȳ and observing that (zu − z̄)(x, t) = K0(yu − ȳ)(x, t), we obtain
the following equation for w















∂w

∂t
−∆w +R′(ŷu)w + µw + αKµ(w) = e−µt(u− ū) in Q

∂nw = 0 on Σ

w(x, 0) = 0 in Ω,

(3.21)

where ŷu(x, t) = ȳ(x, t) + θ(x, t)(yu(x, t) − ȳ(x, t)) and 0 ≤ θ(x, t) ≤ 1. If µ is
sufficiently large, [8, Lemma 2.3] directly leads to the estimate for yu − ȳ in (3.18).

The estimate of ϕu − ϕ̄ in (3.19) is obtained by considering the difference of the
adjoint equations for ϕu and ϕ̄. Notice that the right-hand side of the associated
adjoint PDE of this difference is just CYQ (yu − ȳ), while in the terminal condition
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the term CYT (yu(T ) − ȳ(T )) appears. Here, we use that ‖yu(T ) − ȳ(T )‖L∞(Ω) ≤
‖yu − ȳ‖L∞(Q). The estimation of ϕu − ϕ̄ is performed for the version of the adjoint
equation where ψu and ψ̄ are eliminated on using the adjoint integral operator K∗

µ.
We omit the related computations, because they are straightforward.

Finally, we prove the estimate (3.20). From [8, (10)], we know the estimate

‖Kµ‖L(L2(Q)) ≤ |γ|
√

T
2(β+µ) . Now, we set w(x, t) = e−µtηv(x, t); then, w satisfies

(3.21) with e−µtv in the right hand side. Next, we fix µ large enough such that

R′(ȳ) + µ + α |γ|
√

T
2(β+µ) ≥ 1 in Q. Multiplying the equation by w and integrating

in Q we infer

1

2
‖w(T )‖2L2(Ω) + ‖∇w‖2L2(Q) + ‖w‖2L2(Q) ≤

∫

Q

e−µtvw dx dt ≤ ‖v‖L1(Q)‖w‖L∞(Q).

From here we get

‖w(T )‖2L2(Ω) + ‖w‖2L2(Q) ≤ C‖v‖L1(Q)‖v‖L3(Q).

Writing ηv(x, t) = eµtw(x, t) we deduce (3.20).

Lemma 3.9. There exist a constant Cη and ε > 0 such that

‖ηu,v − ηv‖W (0,T ) ≤ Cη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q) ∀v ∈ L2(Q), ∀u ∈ Uad, (3.22)

where from now on, differing from the notation in Theorem 1.2, ηu,v and ηv are ηu,v
and ηv are the first components of G′(u)v and G′(ū)v, respectively. Moreover, there
is a constant C0 such that

‖yu − ȳ − ηu−ū‖W (0,T ) ≤ C0 ‖yu − ȳ‖L∞(Q)‖yu − ȳ‖L2(Q) ∀u ∈ Uad. (3.23)

Proof. We introduce the operator Kµ as in the proof of Lemma 3.8 and define
w(x, t) = e−µt(ηu,v− ηv). Now, we subtract the equation satisfied by ηv from that for
ηu,v and apply the mean value theorem to get















∂w

∂t
−∆w +R′(yu)w + µw + αKµ(w) = −e−µtR′′(ỹu)(yu − ȳ)ηv in Q

∂nw = 0 on Σ

w(x, 0) = 0 in Ω,

(3.24)
where ỹu(x, t) = ȳ(x, t)+ϑ(x, t)(yu(x, t)− ȳ(x, t)), 0 ≤ ϑ(x, t) ≤ 1, and µ is sufficiently
large. Invoking again [8, Lemma 2.3], we obtain (3.22).

To show (3.23), we proceed similarly. We set w̃ = e−µt(yu−ȳ−ηu−ū) and perform
the Taylor expansion

R(yu) = R(ȳ) +R′(ȳ)(yu − ȳ) +
1

2
R′′(ȳ + θ(yu − ȳ))(yu − ȳ)2 with 0 ≤ θ(x, t) ≤ 1.

From the PDEs for yu, ȳ, and ηu−ū, we deduce analogously to (3.24)

∂w̃

∂t
−∆w̃ +R′(ȳ)w̃ + µw̃ + αKµ(w̃) = −e−µtR′′(ȳ + θ(yu − ȳ))(yu − ȳ)2 in Q
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subject to the same homogeneous boundary and initial conditions as for w above.
Then the estimate (3.23) for w̃ = yu − ū− ηu−ū follows as the one for w.

Lemma 3.10. There exists a constant Ma,b such that ∀u ∈ Uad and ∀v1, v2 ∈
L2(Q) the following estimate holds

|F ′′(u)(v1, v2)| ≤Ma,b

(

‖ηv1‖L2(Q)‖ηv2‖L2(Q) + ‖ηv1(T )‖L2(Ω)‖ηv2(T )‖L2(Ω)

)

.
(3.25)

Proof. This estimate follows easily from the expression (1.7) of F ′′, (3.17), and
the fact that the functions CYQ , CYT , CZQ and CZT are bounded. In addition, we have to
recall that ζv(x, t) = K0(ηv)(x, t), where K0 is the operator introduced in the proof
of Lemma 3.8. From this identity we get

‖ζv‖L2(Q) ≤ γT ‖ηv‖L2(Q) and ‖ζv(T )‖L2(Ω) ≤ γ
√
T‖ηv‖L2(Q). (3.26)

Next, we prove our last lemma.
Lemma 3.11. For every ρ > 0 there exists ε > 0 such that

|[F ′′(u)− F ′′(ū)]v2| ≤ ρ
(

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

)

(3.27)

holds for all v ∈ L2(Q) and for all u ∈ Uad such that ‖yu − ȳ‖L∞(Q) < ε.
Proof. From (1.7), it follows

[F ′′(u)− F ′′(ū)]v2=

∫

Q

CYQ (η2u,v − η2v) dx dt+

∫

Q

{R′(ȳ)ϕ̄η2v −R′(yu)ϕuη
2
u,v} dx dt

+

∫

Ω

CYT (η2u,v(T )− η2v(T )) dx+

∫

Ω

CZT (ζ
2
u,v(T )− ζ2v (T )) dx

+

∫

Q

CZQ(ζ
2
u,v − ζ2v ) dx dt = I1 + I2 + I3 + I4 + I5.

Let us indicate how all these terms can be estimated. First, from (3.22) we deduce
that

‖ηu,v − ηv‖L2(Q) ≤ ‖ηu,v − ηv‖W (0,T ) ≤ Cη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q) (3.28)

‖ηu,v(T )− ηv(T )‖L2(Ω) ≤ C‖ηu,v − ηv‖W (0,T ) ≤ CCη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q).(3.29)

From here, we also get

‖ηu,v‖L2(Q) ≤
(

1 + Cη‖yu − ȳ‖L∞(Q)

)

‖ηv‖L2(Q) (3.30)

‖ηu,v(T )‖L2(Ω) ≤ ‖ηu,v(T )− ηv(T )‖L2(Ω) + ‖ηv(T )‖L2(Ω)

≤ CCη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q) + ‖ηv(T )‖L2(Ω). (3.31)

We use (3.28) and (3.30) to estimate I1

|I1| ≤ ‖CYQ‖L∞(Q)‖ηu,v + ηv‖L2(Q)‖ηu,v − ηv‖L2(Q)

≤ ‖CYQ‖L∞(Q)

(

2 + Cη‖yu − ȳ‖L∞(Q)

)

Cη‖yu − ȳ‖L∞(Q)‖ηv‖2L2(Q).

I3 is estimated from (3.29) and (3.31) as follows

|I3| ≤ ‖CYT ‖L∞(Ω)‖ηu,v(T ) + ηv(T )‖L2(Ω)‖ηu,v(T )− ηv(T )‖L2(Ω)
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≤ ‖CYT ‖L∞(Ω)C
2C2

η‖yu − ȳ‖2L∞(Q)‖ηv‖2L2(Q)

+‖CYT ‖L∞(Ω)CCη‖yu − ȳ‖L∞(Q)2‖ηv‖L2(Q)‖ηv(T )‖L2(Ω)

≤ ‖CYT ‖L∞(Ω)‖yu − ȳ‖L∞(Q)

{

C2C2
η (1 + ‖yu − ȳ‖L∞(Q))‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

.

To deduce the estimates for I4 and I5 we use again the operator K0. Then, from
(3.26) we obtain

‖ζu,v‖L2(Q) ≤ γT ‖ηu,v‖L2(Q),

‖ζu,v(T )‖L2(Ω) ≤ γ
√
T‖ηu,v(T )‖L2(Ω),

‖ζu,v − ζv‖L2(Q) ≤ γT ‖ηu,v − ηv‖L2(Q),

‖ζu,v(T )− ζv(T )‖L2(Ω) ≤ γ
√
T‖ηu,v(T )− ηv(T )‖L2(Ω).

Now, we proceed in the same way as for the estimates I1 and I3. Finally, we estimate
I2 as follows

|I2|≤ ‖R′(ȳ)−R′(yu)‖L∞(Q)‖ϕ̄‖L∞(Q)‖ηv‖2L2(Q)

+‖R′(yu)‖L∞(Q)‖ϕ̄− ϕu‖L∞(Q)‖ηv‖2L2(Q)

+‖R′(yu)‖L∞(Q)‖ϕu‖L∞(Q)‖ηv − ηu,v‖2L2(Q).

By (3.19), we can estimate the first two terms by C′‖yu− ȳ‖L∞(Q)‖ηv‖2L2(Q) for some

constant C′. The third term is estimated as I1. The statement of the lemma is a
straightforward consequence of the obtained estimates.

Proof of Theorem 3.7. By Lemma 3.11, we have the existence of ε0 > 0 such that,
for all u ∈ Uad with ‖yu − ȳ‖L∞(Q) < ε0,

|[F ′′(u)− F ′′(ū)]v2| ≤ σ

16

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

∀v ∈ L2(Q). (3.32)

Using Lemma 3.8, we deduce that

‖yu − ȳ‖L∞(Q) ≤
C3

C∞

‖u− ū‖L3(Q) ≤
C3

C∞

(b− a)1/3‖u− ū‖2/3L2(Q).

Let us take

0 < ε1 ≤
(

C∞ε0
C3(b− a)1/3

)3/2

.

Then ‖yu − ȳ‖L∞(Q) < ε0 if ‖u− ū‖L2(Q) < ε1. Hence, (3.32) is true in Uad ∩Bε1(ū),

|[F ′′(u)−F ′′(ū)]v2| ≤ σ

16

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

∀v ∈ L2(Q), u ∈ Uad ∩Bε1 (ū).
(3.33)

Next, we prove that (3.16) holds with ε = min{ε1, ε2}, where ε2 will be defined below.
Let us take u ∈ Uad ∩Bε(ū). We denote by Qv the set of points (x, t) ∈ Q such that
(3.12) is not satisfied by (u − ū)(x, t). Now we set

v = (u − ū)χQv
,
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where χQv
is the characteristic function of Qv, and w = (u − ū) − v. By definition

w(x, t) satisfies (3.12) for every (x, t) ∈ Q, and hence w ∈ Cτū .

From (1.5), (3.13), and (3.33) we infer

J(u)− J(ū) ≥ F ′(ū)(u− ū) +
1

2
F ′′(ū+ θ(u − ū))(u− ū)2 + κj′(ū;u− ū)

≥ τ‖v‖L1(Qv) +
1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū+ θ(u− ū))− F ′′(ū)](u − ū)2

≥ τ‖v‖L1(Q) +
1

2
F ′′(ū)w2 +

1

2
F ′′(ū)v2 + F ′′(ū)(v, w)

− σ

16

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

. (3.34)

From (3.20) we get

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω) ≤ C1(b− a)1/3‖u− ū‖2/3L2(Q)‖v‖L1(Q)

≤ C1(b− a)1/3ε
2/3
2 ‖v‖L1(Q).

From here it follows

‖v‖L1(Q) ≥
1

C1(b− a)1/3ε
2/3
2

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

.

Inserting this inequality in (3.34) and using (3.15) and (3.25) it follows

J(u)− J(ū) ≥ τ

C1(b− a)1/3ε
2/3
2

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

+
σ

2

{

‖ηw‖2L2(Q) + ‖ηw(T )‖2L2(Ω)

}

− Ma,b

2

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

−Ma,b

{

‖ηv‖L2(Q)‖ηw‖L2(Q) + ‖ηv(T )‖L2(Ω)‖ηw(T )‖L2(Ω)

}

− σ

16

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

and, with Young’s inequality,

≥
(

τ

C1(b − a)1/3ε
2/3
2

− Ma,b

2
−
M2
a,b

σ

)

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

+
σ

4

{

‖ηw‖2L2(Q) + ‖ηw(T )‖2L2(Ω)

}

− σ

16

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

.

(3.35)

We take ε2 > 0 satisfying

τ

C1(b − a)1/3ε
2/3
2

− Ma,b

2
−
M2
a,b

σ
≥ σ

4
.
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Inserting this inequality in (3.35) we obtain

J(u)− J(ū) ≥ σ

4

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω) + ‖ηw‖2L2(Q) + ‖ηw(T )‖2L2(Ω)

}

− σ

16

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

≥ σ

8

{

‖ηv+w‖2L2(Q) + ‖ηv+w(T )‖2L2(Ω)

}

− σ

16

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

=
σ

16

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

(notice that v + w = u− ū). Hence, (3.16) holds with ε = min{ε1, ε2}.
Corollary 3.12. Under the assumptions of Theorem 3.7, there exist ε > 0 and

δ > 0 such that

J(ū) +
δ

2

{

‖yu − ȳ‖2L2(Q) + ‖yu(T )− ȳ(T )‖2L2(Ω)

}

≤ J(u) ∀u ∈ Uad ∩Bε(ū). (3.36)

Proof. We define w = e−µt(yu − ȳ − ηu−ū); then we know the estimate (3.23),

‖w‖W (0,T ) ≤ C1 ‖yu − ȳ‖L∞(Q)‖yu − ȳ‖L2(Q) ∀u ∈ Uad.

Let now ε be as in Theorem 3.7 and take ε1 ≤ ε such that eµTC1ε0 <
1
2 . Then, for

‖yu − ȳ‖L∞(Q) < ε0 we have

‖yu − ȳ‖L2(Q) ≤ eµT ‖w‖L2(Q) + ‖ηu−ū‖L2(Q) ≤
1

2
‖yu − ȳ‖L2(Q) + ‖ηu−ū‖L2(Q),

hence, moving the term 1
2‖yu − ȳ‖L2(Q) to the other side,

‖yu − ȳ‖L2(Q) ≤ 2‖ηu−ū‖L2(Q) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) < ε0.

Moreover, we have

‖yu(T )− ȳ(T )‖L2(Ω) ≤ eµT ‖w(T )‖L2(Ω) + ‖ηu−ū(T )‖L2(Ω)

≤ C2e
µT ‖w‖W (0,T ) + ‖ηu−ū(T )‖L2(Ω)

≤ C2

2
‖yu − ȳ‖L2(Q) + ‖ηu−ū(T )‖L2(Ω) ≤ C2‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω).

Therefore, we get from the last two estimates

‖yu − ȳ‖2L2(Q) + ‖yu(T )− ȳ(T )‖2L2(Ω) ≤ C3

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

∀u ∈ Uad such that ‖yu − ȳ‖L∞(Q) < ε. Finally, we take 0 < δ ≤ σ

8C3
and 0 < ε ≤ ε0

so that ‖yu − ȳ‖L∞(Q) < ε0 for every u ∈ Uad ∩ Bε(ū). Then, (3.36) follows from
(3.16).

The growth condition (3.36) is valid in a ball around ū. Therefore, we analyze
if a result similar to Corollary 3.5 can be proved for the case ν = 0. This would be
applicable in a ball around ȳ, hence in a possibly larger neighborhood of ū.

We have not been able to establish such a result based on the cone Cτū . To deal
with this problem we introduce a different extended cone defined by

Eτū =
{

v ∈ L2(Q) satisfying (3.1) and

F ′(ū)v + κj′(ū; v) ≤ τ{‖ηv‖L2(Q) + ‖ηv(T )‖L2(Ω)}
}

.
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From Lemma 3.1-1 and (1.5) we infer that Cū ⊂ Eτū for every τ > 0. Thus the cone
Eτū can be considered as an small extension of Cū. We are able to prove the following
result on second order sufficiency that is based on Eτū :

Theorem 3.13. Let ū ∈ Uad satisfy the optimality system (2.1)-(2.3) along with
the state (ȳ, z̄) and the adjoint state (ϕ̄, ψ̄). Assume also that

∃τ > 0 and ∃σ > 0 such that F ′′(ū)v2 ≥ σ
(

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

)

∀v ∈ Eτū .

(3.37)
Then, there exists ε > 0 such that

J(ūν) +
δ

2

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) < ε.

(3.38)

Proof. First, we prove that there is a constant M > 0 such that

‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω) ≤M ‖yu − ȳ‖L∞(Q) ∀u ∈ Uad. (3.39)

With Lemma 3.9, (3.23) and (3.17) we obtain

‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω) ≤ ‖ηu−ū − (yu − ȳ)‖L2(Q)

+ ‖ηu−ū(T )− (yu − ȳ)(T )‖L2(Ω) + ‖yu − ȳ‖L2(Q) + ‖(yu − ȳ)(T )‖L2(Ω)

≤ C‖ηu−ū − (yu − ȳ)‖W (0,T ) + (|Q|1/2 + |Ω|1/2)‖yu − ȳ‖L∞(Q)

≤ [CC02Ca,b + |Q|1/2 + |Ω|1/2]‖yu − ȳ‖L∞(Q).

Hence, (3.39) holds with M = CC02Ca,b + |Q|1/2 + |Ω|1/2. Let us set

ε1 =
4τ

M(σ + 2Ma,b)
,

where Ma,b was introduced in Lemma 3.10. From Lemma 3.11, we deduce the exis-
tence of ε2 > 0 such that ∀u ∈ Uad with ‖yu − ȳ‖L∞(Q) < ε2

|[F ′′(u)− F ′′(ū)]v2| ≤ σ

2

{

‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

∀v ∈ L2(Q). (3.40)

Next, we prove that (3.38) holds with ε = min{ε1, ε2}. We take u ∈ Uad such that
‖yu − ȳ‖L∞(Q) < ε and distinguish two cases.

CASE I: u− ū 6∈ Eτū. Here we have

J(u)− J(ū) ≥ F ′(ū)(u − ū) +
1

2
F ′′(ū+ θ(u − ū))(u − ū)2 + κj′(ū;u− ū)

> τ
{

‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω)

}

− Ma,b

2

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

≥ τ

Mε

{

‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω)

}2 − Ma,b

2

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

≥
(

τ

Mε
− Ma,b

2

)

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

≥ σ

4

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

.
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Notice that (3.39) yields (‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω))
−1 ≥ (Mε)−1.

CASE II: u− ū ∈ Eτū. This time, we use (1.5), (2.3), (3.37) and (3.40)

J(u)− J(ū) ≥ F ′(ū)(u− ū) +
1

2
F ′′(ū + θ(u− ū))(u− ū)2 + κj′(ū;u− ū)

≥
∫

Q

(ϕ̄ + νū+ κλ̄)(u − ū) dx dt+
1

2
F ′′(ū+ θ(u − ū))(u − ū)2

≥ 1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū + θ(u− ū))− F ′′(ū)](u − ū)2

≥ σ

2

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

− σ

4

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

=
σ

4

{

‖ηu−ū‖2L2(Q) + ‖ηu−ū(T )‖2L2(Ω)

}

.

Corollary 3.14. Let ū satisfy the assumptions of Theorem 3.13. Then, there
exist δ > 0 and ε > 0 such that, for all u ∈ Uad with ‖yu − ȳ‖L∞(Q) < ε,

J(ū) +
δ

2

{

‖yu − ȳ‖2L2(Q) + ‖yu(T )− ȳ(T )‖2L2(Ω)

}

≤ J(u). (3.41)

The proof of this corollary is almost the same as the one of Corollary 3.12. Corol-
lary 3.12 also holds under the second order condition (3.37). This is a consequence of
(3.41) and (3.19). By Corollary 3.14 the local optimality of ū is strong in the sense
of calculus of variations.

We finish this section by proving that the second order condition (3.14) can only
hold in some exceptional cases.

Theorem 3.15. Let ū ∈ Uad satisfy the optimality system (2.1)-(2.3) along with
the state (ȳ, z̄) and the adjoint state (ϕ̄, ψ̄). If ν = 0 and ū 6≡ 0, ū 6≡ a, ū 6≡ b, ϕ̄ 6≡ κ
and ϕ̄ 6≡ −κ, then (3.14) cannot hold.

Proof. We argue again by contradiction: Assume that (3.14) holds. Then, arguing
as in the proof of Theorem 3.7, we deduce the existence of δ > 0 and ε > 0 such that

J(ū) +
δ

2
‖u− ūν‖2L2(Q) ≤ J(u) ∀u ∈ Uad ∩Bε(ū).

Then, ū is a solution of the problem

(Q)

{

Min I(u) := J(u)− δ

2
‖u− ū‖2L2(Q).

u ∈ Uad ∩Bε(ū)

The Hamiltonian of this control problem is given by

H(x, t, y, z, ϕ, u) = L(x, t, y, z)+ϕu+κ|u|− δ

2
(u−ū(x, t))2 = L(x, t, y, z)+H(x, t, ϕ, u),

where

L(x, t, y, z) = CYQ (x, t)(y − yQ(x, t))
2 + CZQ(x, t)(z − zQ(x, t))

2

and H denotes the part of the Hamiltonian involving u. To shorten the notation we
set H̄(x, t, u) = H(x, t, ϕ̄(x, t), u). According to Pontryagin’s principle

H̄(x, t, ū(x, t)) = min
u∈[a,b]

H̄(x, t, u) for a.a. (x, t) ∈ Q; (3.42)
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see, for instance, [5] or [14, Chapter 4] for the proof of Pontryagin’s principle for
control problems associated with evolution partial differential equations. However,
(3.42) contradicts the following inequalities

if κ < ϕ̄(x, t) < κ+
δ

2
|a| ⇒ H̄(x, t, 0) < H̄(x, t, a)

if κ < −ϕ̄(x, t) < κ+
δ

2
b ⇒ H̄(x, t, 0) < H̄(x, t, b)

if 0 < ϕ̄(x, t) < κ and κ− ϕ̄(x, t) <
δ

2
|a| ⇒ H̄(x, t, a) < H̄(x, t, 0)

if − κ < ϕ̄(x, t) < 0 and κ+ ϕ̄(x, t) <
δ

2
b ⇒ H̄(x, t, b) < H̄(x, t, 0).

(3.43)

Indeed, let us prove that the first and the third statements contradict (3.42). The
other two statements are analyzed similarly. If κ < ϕ̄(x, t), then Corollary 2.4 implies
that ū(x, t) = a. Now, using that ϕ̄(x, t) < κ+ δ

2 |a|, we get

H̄(x, t, ū(x, t)) = ϕ̄(x, t)ū(x, t) + κ|ū(x, t)| = ϕ̄(x, t)a+ κ|a|

= (κ− ϕ̄(x, t))|a| > − δ
2
a2 = H̄(x, t, 0).

Let us consider the case 0 < ϕ̄(x, t) < κ. Then Corollary 2.4 implies that ū(x, t) = 0.
On the other hand, using the inequality κ− ϕ̄(x, t) < δ

2 |a|, we obtain

H̄(x, t, ū(x, t)) = ϕ̄(x, t)ū(x, t) + κ|ū(x, t)| = 0

> (κ− ϕ̄(x, t))|a| − δ

2
a2 = H̄(x, t, a).

Finally, since ϕ̄ ∈ C(Q), and ū 6≡ 0, ū 6≡ a, ū 6≡ b, ϕ̄ 6≡ κ and ϕ̄ 6≡ −κ, we deduce
from Corollary 2.4 that the sets

Q+
κ = {(x, t) ∈ Q : ϕ̄(x, t) > κ}, Q−

κ = {(x, t) ∈ Q : ϕ̄(x, t) < −κ},

and Qκ = {(x, t) ∈ Q : |ϕ̄(x, t)| < κ}
are strict open subsets of Q, and at least one of them is not empty. Hence, the set of
points (x, t) satisfying one of the conditions of (3.43) is open and nonempty. Conse-
quently, the set of points where Pontryagin’s principle fails has a positive Lebesgue
measure, which is not possible.

Remark 3.16. The coercivity assumption (3.15) can only hold, if there is a con-
stant δ0 > 0 such that CYQ (x, t) ≥ δ0 holds for a.a. (x, t) ∈ Q and CYT (x) ≥ δ0 holds
for a.a. x ∈ Ω. Our theory is worked out for this case.

If CYT does not obey this assumption, for instance if CYT = 0, then the main results
must be modified in an obvious way. The reader will confirm that then the theory
remains valid under the following changes: The norm squares of ηv(T ), ηu−ū(T ) in
(3.15), (3.16), (3.37), and (3.38) are to be deleted. Analogously, the norm squares of
yu(T )− ȳ(T ) must be deleted in (3.36) and (3.41).

4. Applications to the Stability Analysis with Respect to Perturba-
tions. Here, we exemplarily show by three case studies how the second order sufficient
optimality conditions can be invoked as main assumption for proving the stability of
optimal solutions with respect to perturbations of our optimal control problem. We
consider perturbations of the desired state functions and also the case where the
Tikhonov regularization parameter ν tends to zero. This can be viewed as a pertur-
bation of the reference parameter ν = 0.



Sparse Control of the FitzHugh-Nagumo Equation 23

4.1. Perturbations of the desired state functions.

4.1.1. Case ν > 0. Assume that a family of perturbed desired state functions
yεQ, z

ε
Q ∈ Lp(Q), p > 5/2, and yεT , z

ε
T ∈ L∞(Ω), ε > 0, is given such that

max{‖yεQ− yQ‖L2(Q), ‖zεQ− zQ‖L2(Q), ‖yεT − yT‖L2(Ω), ‖zεT − zT‖L2(Ω)} ≤ C ε ∀ε > 0
(4.1)

is satisfied. We also assume that {yεT , zεT }ε>0 is bounded in L∞(Ω). Associated with
these perturbed data, we define the perturbed objective functionals

F εν (u)=
1

2

∫

Q

{CYQ (yu − yεQ)
2 + CZQ(zu − zεQ)

2} dx dt

+
1

2

∫

Ω

{CYT (yu(·, T )− yεT )
2 + CZT (zu(·, T )− zεT )

2} dx+
ν

2

∫

Q

u2 dx dt,

Jεν (u)= F εν (u) + κ j(u)

and the family of perturbed optimal control problems

(Pεν)

{

Min Jεν (u).
u ∈ Uad

Prior to proving the next result, for convenience we introduce the notation

F (u) := F0(u), F ε(u) := F ε0 (u).

These functions contain only the parts of J and Jε that depend on the state functions.
The Tikhonov regularization term and κ j are separated from them.

Theorem 4.1. If {ūεν}ε is any sequence of optimal controls of problems (Pεν) that
converges weakly in L2(Q) to some ūν, then ūν is optimal for (Pν) and

lim
ε→0

‖ūεν − ūν‖Lp(Q) = 0 (4.2)

holds for all p ∈ [1,∞). Conversely, if ūν is a strict locally optimal control of (Pν),
then there exists a sequence {ūεν}ε of locally optimal controls of (Pεν) converging to ūν .
This sequence obeys (4.2). Furthermore, there exists ρ > 0 such that every ūεν affords
a global minimum to Jεν in Uad ∩ B̄ρ(ūν), where Bρ(ūν) denotes the L2(Q)-ball.

Proof. Let us skip the subscript ν in the proof for convenience. We write ū := ūν
and ūε := ūεν . From ūε ⇀ ū we get ū ∈ Uad and, in a standard way, that ū is optimal
for (Pν). It remains to show the strong convergence.

Applying a result of [11], we know that ȳε − ȳ is bounded in some Hölder space
Cλ(Q̄), λ ∈ (0, 1). Therefore we obtain by compact embedding in C(Q̄) that a
subsequence ȳε := yūε

converges strongly in L∞(Q) towards ȳ as ε → 0. Since the
same holds for all subsequences, we even have ‖ȳε − ȳ‖L∞(Q) → 0 as ε → 0 for the
whole sequence. From (1.1), we also deduced that ‖z̄ε − z̄‖L∞(Q) → 0 as ε→ 0.

Now we show the strong convergence ūε → ū in L2(Q). Writing ‖ · ‖ := ‖ · ‖L2(Q)

for short, we find

J(ū) ≤ lim inf
ε→0

J(ūε)

≤ lim inf
ε→0

(

F (ūε) +
ν

2
‖ūε‖2 + κj(ūε)

)

= lim inf
ε→0

(

F ε(ūε) +
ν

2
‖ūε‖2 + κj(ūε)

)

≤ lim sup
ε→0

(

F ε(ūε) +
ν

2
‖ūε‖2 + κj(ūε)

)

≤ lim sup
ε→0

(

F ε(ū) +
ν

2
‖ū‖2 + κj(ū)

)

= F (ū) +
ν

2
‖ū‖2 + κj(ū) = J(ū).
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Obviously, this chain of inequalities implies the convergence

ν

2
‖ūε‖2 + κj(ūε) →

ν

2
‖ū‖2 + κj(ū), ε→ 0.

As in (3.11), we infer that ‖ūε‖L2(Q) → ‖ū‖L2(Q). Along with the weak convergence,
this leads to ūε → ū in L2(Q). By boundedness of Uad in L∞(Q), we obtain this
convergence also in Lp(Q) for all p ∈ [1,∞).

Let us now prove the second part of the theorem and assume that ū is a strict local
solution to (Pν). The controls ūε are defined as (global) solutions to the auxiliary
problems

min Jεν (u), u ∈ Uad ∩Bρ(ū),

where ρ > 0 is taken sufficiently small. The existence of such controls ūε follows by
standard arguments. Thanks to boundedness and closedness of Uad, we can assume
that ūε ⇀ ũ ∈ Uad ∩ Bρ(ū), possibly after selecting a subsequence. Now we apply
the first result of the theorem in Uad ∩ Bρ(ū) and obtain that ũ is globally optimal
in Uad ∩Bρ(ū), the convergence to ũ is strong, and (4.2) holds. Therefore, since ū is
a strict local solution, ũ = ū must hold provided that ρ was taken sufficiently small.
This is true for any subsequence of ūε and hence the convergence result refers to the
whole sequence ūε.

Theorem 4.2 (Lipschitz stability for ν > 0). Assume that ν > 0 and ūν is
a locally optimal control of (Pν) that satisfies the second order sufficient optimality
condition (3.5). Assume further that (4.1) holds. Let (ūεν) be a sequence of locally
optimal controls of (Pεν) that converges to ūν in L2(Q) as ε → 0 and enjoys the
properties established in Theorem 4.1. Then, there are constants CL > 0 and ε0 > 0
such that

‖ūεν − ūν‖L2(Q) ≤ CL ε ∀ε ∈ (0, ε0]. (4.3)

Proof. Since ūεν → ūν as ε→ 0, there exists ε0 > 0 such that the quadratic growth
condition (3.6) holds and ūεν is a global minimum of Jεν in Uad ∩ Bε0(ūν). Then, we
can argue as follows:

Jεν (ūν) ≥ Jεν (ū
ε
ν) = F ε(ūεν) +

ν

2
‖ūεν‖2L2(Q) + κj(ūεν)

= F (ūεν) +
ν

2
‖ūεν‖2L2(Q) + κj(ūε) + F ε(ūεν)− F (ūεν)

= Jν(ūε) + F ε(ūεν)− F (ūεν)

≥ Jν(ūν) +
δ

2
‖ūεν − ūν‖2L2(Q) + F ε(ūεν)− F (ūεν).

After re-arranging, the last inequality admits the form

(F ε(ūν)− F (ūν))− (F ε(ūεν)− F (ūεν)) ≥
δ

2
‖ūεν − ūν‖2L2(Q). (4.4)

Notice that the same terms ν
2‖ūν‖2L2(Q) and κj(ū) are included in Jε(ūν) and J(ūν)

and are hence cancelled. Inserting the concrete expressions for F ε and F , the left-
hand side of this inequality can be simplified considerably. For instance, by a21−a22 =
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(a1 − a2)(a1 + a2) we obtain for the terms related to CYQ :

1

2

∫

Q

CYQ ((ȳν − yεQ)
2 − (ȳν − yQ)

2) dx dt− 1

2

∫

Q

CYQ ((ȳεν − yεQ)
2 − (ȳεν − yQ)

2) dx dt

=
1

2

∫

Q

CYQ
(

(yQ − yεQ)(2ȳν − yQ − yεQ)− (yQ − yεQ)(2ȳ
ε
ν − yQ − yεQ)

)

dx dt

=

∫

Q

CYQ (yQ − yεQ)(ȳν − ȳεν) dx dt ≤ ‖CYQ‖L∞(Q)‖yQ − yεQ‖L2(Q)‖ȳν − ȳεν‖L2(Q)

≤ C ε ‖ȳν − ȳεν‖L2(Q) ≤ C′ ε ‖ūν − ūεν‖L2(Q).

In the same way, all other integrals appearing in (4.4) are first simplified and next
estimated by the Cauchy-Schwarz inequality. Now the result follows immediately from
these estimates and (4.4).

4.1.2. Case ν = 0. Now we consider the problem (Pν) for ν = 0 and we write
for short (P):= (P0). Let us prove the following result analogous to Theorem 4.1.

Theorem 4.3. If {ūε}ε is any sequence of optimal controls of problems (Pε) that
converges weakly in L2(Q) to some ū, then ū is optimal for (P) and

lim
ε→0

‖ȳε − ȳ‖L∞(Q) = 0. (4.5)

Conversely, if ū is a strict locally optimal control of (P), then there exists a sequence
{ūε}ε of locally optimal controls of (Pε) converging weakly to ū. Moreover, (4.5) holds.
Furthermore, there exists ρ > 0 such that every ūε affords a global minimum to Jε

with respect to the elements u ∈ Uad such that ‖yu − ȳ‖∞ ≤ ρ.
Proof. The first part of the theorem can be proved arguing as in the proof of

Theorem 4.1. For the second part, we take ρ > 0 such that ū is the minimizer of the
functional J in the convex and closed set

Kρ = {u ∈ Uad : ‖yu − ȳ‖∞ ≤ ρ}.

Now we take ūǫ as a global minimizer of Jε in Kρ. Arguing again as in the proof of
Theorem 4.1, we deduce that {ūε}ε converges weakly to ū in Lp(Q) and (4.5) holds.

Theorem 4.4 (Lipschitz stability for ν = 0). Let ū be a locally optimal control of
(P) that satisfies the second order sufficient optimality condition (3.37) and let {ūε}
be a sequence of locally optimal controls of (Pε) that converges weakly to ū in Lp(Q)
as ε→ 0 with the properties established in Theorem 4.3. Denote the associated states
by (ȳ, z̄) and (ȳε, z̄ε), respectively. Then there exists C > 0 such that

‖ȳε− ȳ‖L2(Q)+‖z̄ε− z̄‖L2(Q)+‖ȳε(T )− ȳ(T )‖L2(Ω)+‖z̄ε(T )− z̄(T )‖L2(Ω) ≤ C ε. (4.6)

Proof. Since ‖ȳε − ȳ‖L∞(Q) → 0 as ε → 0, for all sufficiently small ε > 0, ȳε
belongs to a neighborhood of ȳ, where the quadratic growth condition (3.41) holds by
Corollary 3.14. Thanks to this growth condition, we can argue as follows:

Jε(ū) ≥ Jε(ūε) = F ε(ūε) + κj(ūε) = F (ūε) + κj(ūε) + F ε(ūε)− F (ūε)

= J(ūε) + F ε(ūε)− F (ūε)

≥ J(ū) +
δ

2
{‖ȳε − ȳ‖2L2(Q) + ‖ȳε(T )− ȳ(T )‖2L2(Ω)}+ F ε(ūε)− F (ūε).
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After re-arranging, the last inequality admits the form

F ε(ū)− F (ū)− (F ε(ūε)− F (ūε)) ≥
δ

2
{‖ȳε − ȳ‖2L2(Q) + ‖ȳε(T )− ȳ(T )‖2L2(Ω)}, (4.7)

Arguing as in the proof of the previous theorem we get

1

2

∫

Q

CYQ ((ȳ − yεQ)
2 − (ȳ − yQ)

2) dx dt − 1

2

∫

Q

CYQ ((ȳε − yεQ)
2 − (ȳε − yQ)

2) dx dt

≤ C ε ‖ȳ − ȳε‖L2(Q).

In the same way, all other integrals appearing in (4.7) are first simplified and next
estimated by the Cauchy-Schwarz inequality. Finally, we find

c1 ε {‖ȳ − ȳε‖L2(Q) + ‖z̄ − z̄ε‖L2(Q) + ‖ȳ(T )− ȳε(T )‖L2(Ω) + ‖z̄(T )− z̄ε(T )‖L2(Ω)}

≥ δ

2
{‖ȳε − ȳ‖2L2(Q) + ‖ȳε(T )− ȳ(T )‖2L2(Ω)}

≥ c2 {‖ȳε − ȳ‖2L2(Q) + ‖ȳε(T )− ȳ(T )‖2L2(Ω) + ‖z̄ε − z̄‖2L2(Q) + ‖z̄ε(T )− z̄(T )‖2L2(Ω)}
≥ c {‖ȳε − ȳ‖L2(Q) + ‖ȳε(T )− ȳ(T )‖L2(Ω) + ‖z̄ε − z̄‖L2(Q) + ‖z̄ε(T )− z̄(T )‖L2(Ω)}2.

Here, we have exploited the estimate

‖z̄ε − z̄‖L2(Q) = ‖K0(ȳε − ȳ)‖L2(Q) ≤ C‖ȳε − ȳ‖L2(Q)

and an associated inequality for the time t = T (cf. the proof of Lemma 3.8) to get
the second inequality and the equivalence of all norms in R

4 to obtain the third one.
Now the result follows immediately.

4.2. Tikhonov parameter tending to zero. In this section, we investigate
the behavior of a sequence of optimal controls {ūν}ν>0 of (Pν) and the corresponding
states {(ȳν , z̄ν)}ν>0 as ν → 0. Since Uad is bounded in L∞(Q), any sequence of
solutions of (Pν) contains subsequences converging weakly∗ in L∞(Q). Below, we will
deduce consequences of this convergence.

Theorem 4.5. Let {ūν}ν>0 be a sequence of global solutions of (Pν) such that
ūν ⇀ ū in L2(Q) for ν ↓ 0. Then ū is a global solution of (P) and ‖ūν− ū‖L2(Q) → 0.
Moreover, the following identity holds

‖ū‖L2(Q) = min{‖u‖L2(Q) : u is a global solution of (P)}. (4.8)

Proof. First we observe that the boundedness of {ūν}ν>0 in L∞(Q) and the weak
convergence ūν ⇀ ū for ν ↓ 0 in L2(Q) implies that ūν ⇀ ū for ν ↓ 0 in Lp(Q) for
any 1 ≤ p < ∞. Moreover, ū ∈ Uad holds. Let (ȳν , z̄ν) = G(ūν) and (ȳ, z̄) = G(ū).
From the equation satisfied by z̄ν , we deduce

z̄ν(x, t) = e−βtz0(x, t) +

∫ t

0

e−β(t−s)(γȳν(x, s) − δ) ds. (4.9)

We have a similar representation for z̄ in terms of ȳ. Using (3.17) and (3.19) and
the compactness of the embedding W (0, T ) ⊂ L2(Q), it is easy to pass to the limit
in the state equation (1.1) satisfied by (ȳν , z̄ν) and to confirm that (ȳν , z̄ν) ⇀ (ȳ, z̄)
in W (0, T ). By the continuity of the embedding W (0, T ) →֒ C([0, T ], L2(Ω)), the



Sparse Control of the FitzHugh-Nagumo Equation 27

convexity of the cost functional with respect to (y, z, u), and using that ūν is a solution
of (Pν) it follows

J(ū) ≤ lim inf
ν→0

J(ūν) ≤ lim inf
ν→0

Jν(ūν) ≤ lim
ν→0

Jν(u) = J(u) ∀u ∈ Uad.

This implies that ū is a solution of (P). Let us prove that {ūν}ν>0 converges strongly
to ū. Since ūν and ū are solutions of (Pν) and (P), respectively, we obtain

J(ūν) +
ν

2
‖ūν‖2L2(Q) = Jν(ūν) ≤ Jν(ū) = J(ū) +

ν

2
‖ū‖2L2(Q) ≤ J(ūν) +

ν

2
‖ū‖2L2(Q),

which implies that ‖ūν‖2L2(Q) ≤ ‖ū‖2L2(Q) for every ν > 0. From here, we infer

‖ū‖L2(Q) ≤ lim inf
ν→0

‖ūν‖L2(Q) ≤ lim sup
ν→0

‖ūν‖L2(Q) ≤ ‖ū‖L2(Q).

Thus, we have ‖ūν‖L2(Q) → ‖ū‖L2(Q), which leads to the strong convergence ūν → ū
in L2(Q). Finally, arguing as above, for any (global) solution u of (P) we have that
‖ūν‖L2(Q) ≤ ‖u‖L2(Q) ∀ν > 0. Hence,

‖ū‖L2(Q) = lim
ν→0

‖ūν‖L2(Q) ≤ ‖u‖L2(Q),

which implies (4.8).
Remark 4.6. Except for the strong convergence ūν → ū in L2(Q), the rest of the

statements in the above theorem can be deduced from Danskin’s Theorem [10, Thm. 1].
However, to apply this result, we would have to verify the hypotheses of the theorem.
Moreover, our proof above is short. To make our paper self-contained, we preferred to
present a complete proof without using Danskin’s Theorem.

Now, we formulate a converse result, namely that strict local solutions to (P)
can be approximated by local solutions of (Pν). This is an analogon of Theorem 4.1,
therefore we omit the proof, because it is almost identical to that of Theorem 4.1.

Theorem 4.7. Let ū be a strict local solution of (P). Then, there exist ρ > 0,
ν̄ > 0 and a sequence {ūν}0<ν≤ν̄ of local solutions of (Pν) such that ūν → ū in L2(Q)
and every ūν affords a global minimum to Jν in Kρ = Uad ∩ B̄ρ(ū).

Let us mention the following property. If ū is as in Theorem 4.5 and ũ is a global
solution of (P) with ‖ũ‖L2(Q) > ‖ū‖L2(Q), then (4.8) implies that there is no sequence
{ūν}ν>0 of global solutions of problems (Pν) converging to ũ. However, Theorem 4.7
proves that ũ can be approximated by local solutions of problems (Pν).

We know the convergence of global (local) solutions ūν of (Pν) to global (local)
solutions ū of (P). But, we are interested to determine the rate of convergence. The
next theorem provides such a rate for the associated states. It is applicable, if the
coercivity condition is fulfilled in the form (3.15) (based on Cτū) or in the form (3.37)
(based on Eτū). Notice that yu 6= yv implies u 6= v. Therefore, the strong quadratic
growth condition (3.41) ensures in particular that ū is a strict local solution.

Theorem 4.8 (Hölder rate of convergence as ν ↓ 0). Let ū and {ūν}0<ν≤ν̄ be as
in Theorem 4.7. Let us assume that one of the conditions (3.15) or (3.37) is satisfied.
Then, the following identities hold

lim
ν→0

1√
ν

{

‖ȳν − ȳ‖L2(Q) + ‖z̄ν − z̄‖L2(Q)

}

= 0,

lim
ν→0

1√
ν

{

‖ȳν(T )− ȳ(T )‖L2(Ω) + ‖z̄ν(T )− z̄(T )‖L2(Ω)

}

= 0,
(4.10)
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where (ȳν , z̄ν) = G(ūν) and (ȳ, z̄) = G(ū).
Proof. Using (3.36) or (3.41) and the fact that Jν(ūν) ≤ Jν(ū), we get

J(ū) +
δ

2

{

‖yν − ȳ‖2L2(Q) + ‖yν(T )− ȳ(T )‖2L2(Ω)

}

+
ν

2
‖ūν‖2L2(Q)

≤ J(ūν) +
ν

2
‖ūν‖2L2(Q) = Jν(ūν) ≤ Jν(ū) = J(ū) +

ν

2
‖ū‖2L2(Q).

From here, we deduce that ‖ūν‖L2(Q) ≤ ‖ū‖L2(Q) and furthermore

δ

2

{

‖yν − ȳ‖2L2(Q) + ‖yν(T )− ȳ(T )‖2L2(Ω)

}

≤ ν

2

(

‖ū‖L2(Q) − ‖ūν‖L2(Q)

)

≤ ν‖ū‖L2(Q)‖ū− ūν‖L2(Q).

Hence, the inequality

1√
ν

{

‖yν − ȳ‖L2(Q) + ‖yν(T )− ȳ(T )‖L2(Ω)

}

≤
(

2

δ
‖ū‖L2(Q)‖ū− ūν‖L2(Q)

)1/2

is fulfilled, where the right hand side converges to zero. The proof is finished by
recalling that

‖z̄ν − z̄‖L2(Q) + ‖z̄ν(T )− z̄(T )‖L2(Ω) ≤ C
{

‖yν − ȳ‖L2(Q) + ‖yν(T )− ȳ(T )‖L2(Ω)

}

.

We should mention that this estimate is fairly pessimistic. All of our numerical
tests below show that the convergence has the order ν, i.e. numerically we see a
Lipschitz rather than a Hölder estimate. Though this is not a proof, there is a
theoretical explanation for this. It is known from similar discussions for problems
with linear elliptic equations that a Lipschitz estimate for ν → 0 is true provided that
the adjoint state function for ν = 0 satisfies a certain assumption on the behavior in
its zeros, cf. [19]. This assumption is often fulfilled and the result of Lipschitz stability
seems to be satisfied also in our case of a nonlinear system of parabolic equations.
However, an associated discussion would go beyond the scope of our paper.

5. Numerical results. The goal of this section is to confirm the convergence of
ȳν against ȳ for ν → 0. This needs a very precise computation of optimal solutions and
therefore we concentrate on the spatial 1D case. In 1D, the Schlögl model develops
traveling wave fronts, while the FitzHugh-Nagumo system exhibits traveling pulses
as typical solutions. For 2D examples, we refer to the various examples in our former
paper [8]. For instance, we showed the control of moving spiral waves.

We apply a semi-smooth Newton method since it allows to determine solutions
that satisfy the first order necessary optimality conditions with high accuracy. This
method requires the solution of forward-backward parabolic systems that can be effi-
ciently solved in 1D but would be very demanding in 2D.

Let us briefly sketch our numerical approach. The optimal solutions must obey
the projection-formulas

ūν(x, t) = Proj[a,b]

(

− 1

ν
[ϕ̄ν(x, t) + κ λ̄ν(x, t)]

)

λ̄ν(x, t) = Proj[−1,+1]

(

− 1

κ
ϕ̄ν(x, t)

)
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for the optimal control and the associated the sub-gradient. We define active and
inactive sets for the control u depending on the adjoint state ϕu:

Aa := {(x, t) ∈ Q | − ϕu(x, t) + κ < ν a a.e. in Q} ,
I− := {(x, t) ∈ Q | ν a ≤ −ϕu(x, t) + κ ≤ 0 a.e. in Q} ,
A0 := {(x, t) ∈ Q | |ϕu(x, t)| < κ a.e. in Q} ,
I+ := {(x, t) ∈ Q | 0 ≤ −ϕu(x, t) − κ ≤ ν b a.e. in Q} ,
Ab := {(x, t) ∈ Q | ν b < −ϕu(x, t)− κ a.e. in Q} .

Almost everywhere on Aa, A0, and Ab, the optimal control must be equal to a, 0,
and b, respectively. Almost everywhere in I− resp. I+, the equation u = 1

ν [−ϕu + κ]
resp. u = 1

ν [−ϕu − κ] must hold true.
By these sets, the system of necessary optimality conditions can be expressed in

the form

0 = F(y, z, ϕ, ψ, u) :=



























∂

∂t
y −∆y +R(y) + αy − u

∂

∂t
z + β x− γ y

− ∂

∂t
ϕ−∆ϕ+R′(y)ϕ− γ ψ − cYQ (y − yQ)

− ∂

∂t
ψ + βψ + αϕ− cZQ (z − zQ)

u− χAa
a− χAb

b+
1

ν

(

χI+(ϕ+ κ) + χI−(ϕ− κ)
)



























where χk, k ∈ {Aa, I−,A0, I+,Ab}, denotes the indicator function of the associated
sets. This optimality system, along with the associated initial and boundary condi-
tions, is solved by the semi-smooth Newton method. The shorten the presentation, we
do not explain the steps of this standard method and refer to [18], where the method
is presented in the context of sparse controls for elliptic equations. The method is
terminated, if a suitable norm ‖F‖ is sufficiently small.

To avoid certain oscillation effects of the control iterates, we did not take the
whole Newton step and added the computed Newton direction (dy, dz, dϕ, dψ , du) with
some step-size s to the last iterate (yk, zk, ϕk, ψk, uk). We invoked a modified Armijo-
Goldstein rule, since the standard one slowed down the algorithm considerably:

We fix m ∈ N and determine step-sizes {s1, . . . , sm} by s1 := 1 and sl :=
(

1
2 + rand

(

0, 15
))

sl−1, l ∈ {2, . . . ,m}. Here, rand
(

0, 15
)

denotes a random value
between 0 and 1

5 . Out of this set, the step-size s was taken that minimizes the
norm of F(yk + s dy, zk + s dz, ϕk + s dϕ, ψk + s dψ, uk + s du). Fairly small numbers
m ∈ {10, . . . , 25} were sufficient for making the method fast.

To have a sufficiently accurate initial iterate for the semi-smooth Newton method,
we applied a few iterations of the nonlinear CG method that we also used in [8].
Moreover, the CG method was our method of choice in the case ν = 0.

To set up an optimality indicator for u, we define the function

Ru(x, t) :=











max
(

0,−ϕ̄u(x, t) − κu λ̄(x, t)
)

, if ū(x, t) = a

|ϕ̄u(x, t) + κu λ̄(x, t)|, if a < ū(x, t) < b

max
(

0, ϕ̄u(x, t) + κu λ̄(x, t)
)

, if ū(x, t) = b.

As optimality indicator, we used

Θ := |Q|−1‖Ru‖L2(Q), (5.1)
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where |Q| is the volume of Q. Our optimization algorithms are terminated for suffi-
ciently small Θ.

5.1. Example 1 (Schlögl model). At first, we consider the Schlögl model and
fix α = β = γ = δ = 0, cZT = 0, cZQ = 0, cYT = 0, and cYQ = 1, i.e. we are tracking some
yQ in Q. Starting from a naturally developed uncontrolled wave profile ynat shown
in Fig. 5.1 (left) at t = 0, the target is to approach a piecewise linear shape defined
by

yQ(x, t) =







1, 0 ≤ x ≤ 9.5,
10.5− x, 9.5 < x ≤ 10.5,
0, 10.5 < x ≤ 20,

hence the desired front yQ is a stationary wave front of edged shape. As non-linearity,
we fix R by

R(y) = y(y − 0.25)(y − 1).

For Ω = (0, 20), partitioned by 201 equidistant nodes, the initial value of our desired
wave front satisfies y0(10) = 1

2 . Fig. 5.1 displays the natural development of this
wave profile as well as the desired state yQ for the observed time horizon (0, 10).
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Figure 5.1. Example 1, natural development ynat of the wave profile for u = 0 (left) and the
desired state yQ (right).

As sparse parameter, we set κ = 1e − 2 and fix the control bounds a = −1 and
b = 1. For ν = 1e − 9 the optimal control is displayed in Fig. 5.2 together with its
associated state, adjoint state and the related sets Aa, Ab, A0 that should coincide
with the active/inactive sets of ū. As in the other examples, they show a very good
coincidence.

Let us explain why this form of the optimal control can be expected. In the
unconstrained case, we insert the desired function yQ in the left-hand side of the 1D
Schlögl model,

∂

∂t
yQ − ∂2

∂x2
yQ +R(yQ) = 0 + δ9.5 − δ10.5 +R(yQ) =: û.

The result is a control such that the objective functional is zero for ν = 0. Notice
that the first derivative of yQ is a function of Heaviside type with jumps at 9.5 and
10.5, hence the Dirac Delta functions δ9.5 and −δ10.5 are obtained as derivatives. The
”best” unconstrained control û is a measure and not a measurable function.



Sparse Control of the FitzHugh-Nagumo Equation 31

0 5 10 15 20

2

4

6

8

10  

x

 

t

−1

−0.5

0

0.5

1

0
10

20 0
5

10
0

0.5

1

 

tx

 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

2

4

6

8

10  

x

 

t

Aa

 I−

A0

 I+

Ab

0
10

20 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

 

tx

 −0.05

0

0.05

Figure 5.2. Example 1, optimal control ū (top left), state ȳ (top right), adjoint state ϕ̄ (bottom
right) and associated active/inactive sets (bottom left) for ν = 1e− 9.

With bounded and measurable control functions taking values in [a, b], the desired
state yQ cannot be reached. However, the optimal controls will approximate the
measure defined above. This explains why ū is of bang-bang-bang type, cf. Fig. 5.2.

To compute the optimal solution for ν = 0, we used the non-linear CG-method
and took the optimal control for ν = 1e−9 as initial iterate. However, the CG method
did not improve the initial iterate; the optimality indicator Θ = 6.21e− 13 from (5.1)
was very small. For this reason, we took ȳ := ȳ1e−9 as reference solution to determine
the order of convergence as ν ↓ 0. In both the L2(Q)- and L∞(Q)-norm, ‖ȳν − ȳ‖
appears to decay linearly for ν ↓ 0, cf. Fig. 5.3.
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Figure 5.3. Example 1, ‖ȳν − ȳ‖L2(Q) (left) and ‖ȳν − ȳ‖L∞(Q) (right) for ν ↓ 0.

5.2. Example 2 (FitzHugh-Nagumo system). Here we consider the 1D
FitzHugh-Nagumo system for Ω = (0, 75), T = 10, α = 1, β = 0, γ = 0.33,
δ = −0.429, and R(y) = y(y−

√
3)(y+

√
3). We take a natural impulse as initial value;

this is a snapshot of an (instationary) impulse that develops in the uncontrolled case
as a typical solution of the 1D FitzHugh-Nagumo system. For κ = 0.1, a = −10, and
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b = 10, the goal is to double the velocity of the natural impulse in the y-component
of the solution (y, z). To this aim, we fix cYT = cZT = cZQ = 0 and cYQ = 1. The natural
development of the initial impulse and the desired trajectory are shown in Fig. 5.4.
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Figure 5.4. Example 2, natural development ynat of the impulse for u = 0 (left) and the
desired state yQ (right).

Fig. 5.5 displays the optimal control and the adjoint state for ν = 1e − 10.
Graphically, the optimal state does not differ from the desired state displayed in Fig.
5.4. Moreover, also here the active sets of the optimal control and the sets I+, A0, I−
coincide. We skip these figures not to exceed the paper. The calculated control does
not touch the bounds a = −10 or b = 10. Its maximal absolute value is 8.89.

As in Example 1, taking this result as initial control for the case ν = 0, the CG-
method did not further decrease the objective function; the value Θ = 9.81e− 13 of
the optimality indicator has already been very small.
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Figure 5.5. Example 2, optimal control ū (left) and adjoint state ϕ̄ (right) for ν = 1e− 10.

Also in this example, the decay of ‖ȳν− ȳ‖ in the L2(Q)- and L∞(Q)-norm seems
to be almost linear. The deviation of the last value for ν = 1e− 9 is due to numerical
limitations. For very small ν > 0, the accuracy cannot expected to get any better.
Notice that the term 1/ν appears in the optimality system. We dispense with an
associated graphical representation as in Fig. 5.3, as the decay looks similarly.

Let us emphasize that the values of ‖ȳν − yQ‖L∞(Q) and ‖ȳν − yQ‖L2(Q) from

Tab. 5.1 are quite large. Since the sparse optimal control acts very localized, not all
features of the desired trajectory can be achieved. As Fig. 5.6 displays, the profile of
the impulse is not conserved perfectly, but the main characteristic is. Therefore, we
believe the result is close to global optimality.

5.3. Example 3 (FitzHugh-Nagumo system with explicitly known op-
timal solution). In the preceding example, for ν = 0 or ν very close to 0, the figures
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Table 5.1
Example 2, ‖ȳν − yQ‖L2(Q) and ‖ȳν − ȳ‖L∞(Q).

ν ‖ȳν − yQ‖L2(Q) ‖ȳν − yQ‖L∞(Q) ‖ȳν − ȳ‖
L2(Q) ‖ȳν − ȳ‖

L∞(Q)

1 7.95036 2.86134 7.18160 2.26412

1e-1 3.22170 1.28987 1.52707 7.70512e-1

1e-2 2.94165 0.91893 4.96245e-1 3.28877e-1

1e-3 2.98672 0.73515 1.32929e-1 1.66305e-1

1e-4 3.00047 0.71178 2.14528e-2 4.08718e-2

1e-5 3.00258 0.70999 2.43604e-3 5.02801e-3

1e-6 3.00281 0.70981 2.47567e-4 5.15669e-4

1e-7 3.00284 0.70979 2.51592e-5 5.17744e-5

1e-8 3.00284 0.70979 4.82772e-6 5.25352e-6

1e-9 3.00284 0.70979 4.13440e-6 6.00743e-7

1e-10 3.00284 0.70979 0 0
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Figure 5.6. Example 2, difference ȳ−yQ in the space-time domain Q (left) and ȳ in comparison
to yQ at t = 5 (right) for ν = 1e− 10.

revealed areas with non-empty interior, where the optimal control took nonzero values
strictly between a and b. According to the analysis, the absolute value of the adjoint
state should be equal to κ in these regions. However, this is a numerical result for a fi-
nite dimensional approximation. We can not be certain about the structure of the real
optimal solution. There are two possibilities. The exact set {(x, t) ∈ Q | |ϕ̄(x, t)| = κ}
might have positive measure as the computation seems to indicate. On the other hand,
this might be a numerical artifact and the measure of the set is zero. In that case,
the optimal control should touch the bounds ± 10. Perhaps, our numerical resolution
is not sufficiently fine to see this. To show that also the first explanation might hold
true, we construct an associated example as follows:

Let Ω = (0, 50), T = 10, and define ϕ̄(x, t) := E(x) T (t), where E ∈ C2(Ω̄) and
T ∈ C1[0, T ]. Under these conditions, we first construct an adjoint state ϕ̄ that is
equal to −κ in a subset Qκ of Q with positive measure. Next, we fix an associated
control ū of our choice which is equal to zero in Q \Qκ but non-negative in Qκ.

Setting cZT = cZQ = cYT = 0 and cYQ = 1 once again, for fixed parameters the second

adjoint state ψ̄ is obtained directly from ϕ̄ by (1.8). Moreover, since ū is also fixed,
ȳ can be calculated numerically from the state equation. Along with ϕ̄, ψ̄, and ȳ, the
adjoint equation leads to the desired trajectory yQ. With this approach, we know an
exact stationary point for ν = 0.

Let α = 1, β = 0, γ = 1
2 , δ = − 1

4 and the non-linearity R(y) = y(y− 2)(y+1) be
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given. The constant initial values y0 ≡ − 1
2 and z0 ≡ − 5

8 are stable for this setting.
With κ = 1e − 2, we define fκ(x) := −8 κ (x3 − x4), gκ(x) := κ − fκ(1 − x) =
−κ (1− 8x+ 24x2 − 24x3 + 8x4) and

E(x) :=































fκ((x− 10)/5), if x ∈ [10, 12.5]
gκ((x − 10)/5), if x ∈ (12.5, 15]

−κ, if x ∈ (15, 35)
gκ((40− x)/5), if x ∈ [35, 37.5)
fκ((40− x)/5), if x ∈ [37.5, 40]

0, else,

T (t) :=







(cos(2 π (t− 0.5)) + 1) /2, if t ∈ [1, 1.5] ∪ [3.5, 4]
1, if t ∈ (1.5, 3.5)
0, else

to obtain ϕ̄. For the control, we define ū(x, t) := max(0, (1−(t−2.5)2)∗ ū0(x)), where
ū0(x) := max(0, 1 − ((x − 25)/10)2). This analytically defined optimal control along
with its associated state and adjoint state are shown in figure 5.7.
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Figure 5.7. Example 3, analytically constructed optimal control ū (top left), state ȳ (top right),
adjoint state ϕ̄ (left) and decay of ‖ȳν − ȳ‖L2(Q) for ν ↓ 0 (bottom right).

This approach has the advantage that we have a well defined stationary point for
ν = 0 and can confirm the convergence against this point. Also in this example, we
observe a linear decay of ‖ȳν − ȳ‖. For the norm of L2(Q) this is displayed in Fig.
5.7, for the norm of L∞(Q) this looks similar.

Remark: Since ū only takes values in [0, 1] and our approach does not depend on
the bounds a and b, ū satisfies the first order necessary optimality conditions for any
a ≤ 0 and b ≥ 1. In particular, this works for a < 0 and b > 1 so that the control does
not touch the bounds. Let us mention that our example is not completely analytic.
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Table 5.2
Example 3, ‖ȳν − yQ‖L2(Q) and ‖ȳν − ȳ‖L∞(Q).

ν ‖ȳν − yQ‖L2(Q) ‖ȳν − yQ‖L∞(Q) ‖ȳν − ȳ‖
L2(Q) ‖ȳν − ȳ‖

L∞(Q)

1 1.25458 0.32876 1.13356 2.86116e-1

1e-1 0.59012 0.18273 4.31176e-1 1.30223e-1

1e-2 0.29383 0.09338 8.71793e-2 3.26041e-2

1e-3 0.24118 0.07169 1.06175e-2 4.29191e-3

1e-4 0.23582 0.07172 1.09357e-3 4.45709e-4

1e-5 0.23529 0.07173 1.09709e-4 4.47483e-5

1e-6 0.23523 0.07173 1.09745e-5 4.47662e-6

1e-7 0.23523 0.07173 1.09749e-6 4.47680e-7

1e-8 0.23523 0.07173 1.09750e-7 4.47629e-8

1e-9 0.23523 0.07173 1.26651e-8 4.53634e-9

0 0.23523 0.07173 0 0

The states ȳ and yQ are numerically obtained. We emphasize that the first order
necessary optimality conditions are satisfied but that global optimality of ū cannot
be deduced from this. Even the local optimality cannot be assured. For this purpose,
we would have to check second order sufficient optimality conditions. This cannot
be done numerically. However, even with the quite high penalization from the sparse
term, the computed state ȳ is very close to the desired yQ. Most likely, the consistence
of the first order optimality conditions together with the quite small objective value
indicate global optimality of ū.

Acknowledgement. We thank P. Nestler (Berlin) for his hints that enabled us
to considerably accelerate the convergence of our numerical algorithms.
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