Discrete Parametrized Surfaces via Binets


Jan Techter (TU Berlin)

joint work with Niklas Affolter (TU Wien) and Felix Dellinger (TU Wien)



ICERM 2025
Introduction
Various established discretizations of parametrized surfaces in DDG:

  • Principal nets / curvature line parametrizations:
    circular nets, conical nets, principal contact element nets
  • Kœnigs nets:
    BS-Kœnigs nets, D-Kœnigs nets.
  • Isothermic nets:
    circular isothermic nets, S-isothermic nets, S-conical nets
  • ...


Goal:
Unify, generalize, and improve established discretizations.
Still satisfy
  • transformation group principle
  • cosistency priciple
  • ...
Part 1
Principal Binets
[AT24]
Examples: Discrete surfaces arising as pairs of combinatorially dual nets
Orthogonal circle patterns, Koebe polyhedra, and discrete minimal surfaces
  • [BHS08] Minimal surfaces from circle patterns: Geometry from combinatorics
    Bobenko, Hoffmann, Springborn.
Orthogonal ring patterns, generalized Koebe polyhedra, and discrete CMC surfaces
  • [BHR19] Orthogonal ring patterns
    Bobenko, Hoffmann, Rörig.
  • [BHS24] Constant mean curvature surfaces from ring patterns: Geometry from combinatorics
    Bobenko, Hoffmann, Smeenk.
Discrete confocal coordinates and discrete ellipsoids
  • [BSST18] On a Discretization of Confocal Quadrics. A Geometric Approach to General Parametrizations
    Bobenko, Suris, Schief, T.
  • [HST25+] A canonical discrete analogue of the classical circular cross sections of ellipsoids and their isometric deformation
    Huang, Schief, T.
Circular nets and conical nets
  • [BS07] On organizing principles of Discrete Differential Geometry. The geometry of spheres
    Bobenko, Suris.
  • [PW08] The focal geometry of circular and conical meshes
    Pottmann, Wallner.
Checkerboard patterns and diagonal nets
  • [PJWP19] Checkerboard patterns with black rectangles
    Peng, Jiang, Wonka, Pottmann.
  • [D22] Discrete Isothermic Nets Based on Checkerboard Patterns
    Dellinger.
Binets
A ("classical" discrete) net is a map    $\Z^2 \rightarrow \R\mathrm{P}^n$.
Definition:   A binet is a map    $\Z^2 \cup (\Z^2)^* \rightarrow \R\mathrm{P}^n$,    $(\Z^2)^* = F(\Z^2)$.
Some notation
  • vertices    $V = V(\Z^2) = \Z^2$
  • edges    $E = E(\Z^2)$
  • faces    $F = F(\Z^2) = (\Z^2)^*$

  • double graph    $D = V \cup F$ ,$\qquad\qquad$ then a binet is a map    $D \rightarrow \R\mathrm{P}^n$

  • crosses    $C = \left\{ (v, f, v', f') ~|~ v,v'\in V,\quad f, f'\in F,\quad v, v' \text{ incident to } f, f' \right\}$
Orthogonal binets
Smooth analogue:    Orthogonal parametrization (first fundamantal form diagonal).

Definition:    A binet $\quad b : D \rightarrow \R^3 \quad$ is called orthogonal
$\quad \Leftrightarrow \quad b(v) \vee b(v') \perp b(f) \vee b(f') \quad$ for all crosses $\quad (v, f, v', f') \in C$

Invariances:
  • independent translation of $b|_V$ and $b|_F$
  • similarity transformations
  • a priori, not Möbius invariant
Orthogonal sphere representation for orthogonal binets
Lemma: Let $x_1, x_2, x_3, x_4 \in \R^3$.
Then there exist four spheres $S_1, S_2, S_3, S_4 \subset \R^3$ with these centers
and $S_1 \perp S_2 \perp S_3 \perp S_4 \perp S_1$
$\qquad \Leftrightarrow \quad x_1 x_3 \perp x_2 x_4$


Theorem:    Let $\quad b : D \rightarrow \R^3\quad$ be an orthogonal binet.
Then there exists a map $\quad S : D \rightarrow \left\{ \text{spheres in } \R^3\right\} \quad$ such that
  • for $d \in D$ the point $b(d)$ is the center of $S(d)$, and
  • for incident $v \in V$ and $f \in F$: $\quad S(v) \perp S(f)$.
  • The construction of $S$ has 1 degree of freedom (radius of one sphere).
  • Orthogonal binets are Möbius invariant.
Orthogonal binets are Möbius invariant:
  • Construct orthogonal sphere representation.
  • Apply Möbius transformation to the spheres.
  • Reconstruct centers.
Möbius lift of orthogonal binets
Projective model of Möbius geometry: \[ \mathcal{M} = \left\{ \mathbf{x} = [x] \in \R\mathrm{P}^4 ~|~ \langle x, x \rangle_{\mathcal{M}} = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_5^2 = 0 \right\} \subset \R\mathrm{P}^4\\ \]
  • a sphere $S \subset \mathcal{M}$ is represented by a point $\mathbf{x} \in \R\mathrm{P}^4$ via polarity: $\qquad S = \mathbf{x}^\perp \cap \mathcal{M}$
  • $ S_1 \perp S_2 \quad \Leftrightarrow \quad \mathbf{x}_1 \perp \mathbf{x}_2 \quad \Leftrightarrow \quad \langle x_1, x_2 \rangle_{\mathcal{M}} = 0 $
Theorem:
Let $~ b : D \rightarrow \R^3\,$ be an orthogonal binet. Then there exists a lift $~b_{\mathcal{M}} : D \rightarrow \R P^4$ such that \[ \begin{aligned} &\pi_{\mathbf{B}} \circ b_{\mathcal{M}}= b\\ &b_{\mathcal{M}}(v) \perp b_{\mathcal{M}}(f) \end{aligned} \]

  • Orthogonality in $\R^3$ becomes polarity in $\R\mathrm{P}^4$ in the lift.
  • The Möbius lift has 1 degree of freedom (radius of one sphere).
Definition:
Let $\mathcal{Q} \subset \R\mathrm{P}^n$ be a quadric.
A polar binet is a map $~ b : D \rightarrow \R\mathrm{P}^n ~$ such that
for any two incident $v \in V$ and $f \in F$ the two points $b(v)$ and $b(f)$ are polar: \[ b(v) \perp b(f) \]
Conclusion:
Orthogonal binets in $\R^3$ can be lifted to polar binets in $\R\mathrm{P}^4$.
Vice versa, polar binets in $\R\mathrm{P}^4$ project to orthogonal binets in $\R^3$.
Principal binets
Smooth analogue:    Conjugate parametrization
(second fundamantal form diagonal).
Definition:
A binet $~ b : D \rightarrow \R^3 ~$ is called conjugate
$\Leftrightarrow$ $b|_V$ and $b|_F$ have planar faces (Q-nets)




Smooth analogue:    Principal parametrization / curvature line parametrization
(first and second fundamental form diagonal).

Definition:
A principal binet $~ b : D \rightarrow \R^3 ~$ is a binet that is both conjugate and orthogonal.
Theorem:
Let $~b : D \rightarrow \R^3~$ be a principal binet.
Then its Möbius lift $~b_\mathcal{M} : D \rightarrow \R\mathrm{P}^4~$ is a conjugate polar binet.

  • Additional structure induced by planar sections of the Möbius quadric:
    Circle per $d \in D$.
  • Generalize the circles of circular nets.
Definition of curvature spheres on edges as common sphere of adjacent circles.

Normal binets of principal binets
Theorem :   Let $\, b : D \rightarrow \R^3 \,$ be a principal binet.
Then there exists a map $\, n : D \rightarrow \R^3 \,$, called normal binet of $b$, such that
  • for any $d \in D$: $\quad n(d)$ normal vector of $\square b(d)$,
  • for incident $v \in V$ and $f \in F$: $\quad \langle n(v), n(f) \rangle = 1$.
  • The construction of $n$ has 1 degree of freedom (length of one normal vector).
  • Adjacent normal lines intersect ($\rightarrow$ focal nets and parallel nets)
  • Corresponding edges of $n$ and $b$ are parallel ($\rightarrow$ curvatures from Steiner formula).
  • Gives rise to an orthogonal circle representation on the sphere.
Laguerre lift of principal binets
Definition of Laguerre lift of a principal binet
by combining its planes and normal binet into angled planes.
  • Principal binets are Laguerre invariant.
  • Normal binet and Laguerre lift exist for general orthogonal bi*nets
    (smooth analogue: third fundamental form diagonal)
Theorem:
Let $~b : D \rightarrow \mathbb{R}^3$ be a principal binet.
Then its Laguerre lift $~b_\mathcal{B} : D \rightarrow \R\mathrm{P}^4~$ is a conjugate polar binet.

  • Additional structure induced by planar sections of the Blaschke cylinder:
    Cone per $d \in D$.
  • Generalizes the cones of conical nets.
Definition of Laguerre curvature spheres on edges as common sphere of adjacent cones.

Lie lift of principal binets
Combine the Möbius lift of and the Laguerre lift:
Definition:
Let $\quad b : D \rightarrow \R^3 \quad$ be a principal binet.
Let $\quad b_{\mathcal{M}} : D \rightarrow \mathbf{M}^\perp \subset \R\mathrm{P}^5 \quad$ be a Möbius lift of $b$,
and $\quad b_{\mathcal{B}} : D \rightarrow \mathbf{B}^\perp \subset \R\mathrm{P}^5 \quad$ be a Laguerre lift of $b$.
Then the map $\quad b_{\mathcal{L}} = b_{\mathcal{M}} \vee b_{\mathcal{B}} : D \rightarrow \mathrm{Lines}(\R\mathrm{P}^5) \quad$ is called a Lie lift of $b$.
Theorem:
The Lie lift $~ b_{\mathcal{L}} : D \rightarrow \left\{\text{lines in } \R P^5\right\} ~$ of a principal binet satisfies:
  • adjacent lines intersect
  • $b_{\mathcal{L}}(v) \perp b_{\mathcal{L}}(f) \quad$ for incident $v \in V$ and $f \in F$


Conclusion:
Principal binets in $\R^3$ can be lifted to polar line bicongruences in $\R\mathrm{P}^5$.
Vice versa, polar line bicongruences in $\R\mathrm{P}^5$ project to principal binets in $\R^3$.

Thus, principal binets are Lie invariant.
Multi-dimensional consistency of principal binets
Define conjugate binets on $\mathbb{Z}^N$ as maps $\mathbb{Z}^N \cup F(\mathbb{Z}^N) \rightarrow \mathbb{R}\mathrm{P}^n$

Theorem: Conjugate binets are a multi-dimensional consistent 3D-systems.

Theorem: Polar conjugate binets in $\mathbb{R}\mathrm{P}^4$ are a consistent reduction of conjugate binets in $\mathbb{R}\mathrm{P}^4$.

Corollary: Principal binets in $\R^3$ are a consistent reduction of conjugate binets in $\R^3$.

Part 2
Kœnigs Binets
[ADT25+]
Discrete Laplace invariants

Definition:    Let $~ f = [\hat f] : \Z^2 \rightarrow \R\mathrm{P}^n~$ be a Q-net with \[ \small A\hat f + B\hat f_1 + C\hat f_{12} + D\hat f_2 = 0. \] Then \[ \small H^1 := \mathrm{cr}(f, F^1, f_1, F^1_{\bar 2}) = \frac{D_{\bar 2}B}{C_{\bar 2}A}, \qquad H^2 := \mathrm{cr}(f, F^2_{\bar 1}, f_2, F^2) = \frac{AC_{\bar 1}}{DB_{\bar 1}}, \] are called the discrete Laplace invariants of $[\hat f]$.
Bobenko-Suris-Kœnigs nets
Definition:    A BS-Kœnigs net is a Q-net $~f : \Z^2 \rightarrow \R\mathrm{P}^n~$ such that
at every vertex the discrete Laplace invariants satisfy \[ \small H^1 \cdot H^2 \cdot H^1_{\bar 1} \cdot H^2_{\bar 2} = 1. \]
  • Geometric characterization by coplanar diagonal intersection points.
  • Algebraic characterization by homogeneous lift that satisfies a discrete "face based" Moutard equation.
BS-Christoffel dual
Definition:    Let $f, f^* : \Z^2 \rightarrow \R^n \subset \R\mathrm{P}^n$ be two Q-nets.
Then $f^*$ is a BS-Christoffel dual of $f$ if there exists $\nu : \Z^2 \rightarrow \R \setminus \{0\}$ such that \[ \Delta_1 f^* = \frac{1}{\nu\nu_1} \Delta_1 f \qquad \Delta_2 f^* = -\frac{1}{\nu\nu_2} \Delta_2 f \]
  • Equivalently, dual quads have parallel corresponding edges and parallel non-corresponding diagonals.

Theorem:[Bobenko Suris 07]
A Q-net $~f : \Z^2 \rightarrow \R^n~$ has a BS-Christoffel dual if and only if $f$ is a BS-Kœnigs net.
Doliwa-Kœnigs nets
Definition:    A D-Kœnigs net is a Q-net $~f : \Z^2 \rightarrow \R\mathrm{P}^n~$ such that
at every face the discrete Laplace invariants satisfy \[ H^1 \cdot H^2_1 \cdot H^1_2 \cdot H^2 = 1. \]
  • Geometric characterization by conic through Laplace points.
  • Algebraic characterization by homogeneous lift that satisfies a discrete "vertex based" Moutard equation.
D-Christoffel dual
Definition:    Let $f, f^* : \Z^2 \rightarrow \R^n \subset \R\mathrm{P}^n$ be two Q-nets.
Then $f^*$ is a D-Christoffel dual of $f$ if there exists $\nu : F(\Z^2) \rightarrow \R \setminus \{0\}$ such that \[ \Delta_1 f^* = \frac{1}{\nu\nu_{\bar 2}} \Delta_1 f \qquad \Delta_2 f^* = -\frac{1}{\nu\nu_{\bar 1}} \Delta_2 f \]
Theorem:[ADT25+]
A Q-net $~f : \Z^2 \rightarrow \R^n~$ has a D-Christoffel dual if and only if $f$ is a D-Kœnigs net.
Relation between BS-Kœnigs nets and D-Kœnigs nets
Theorem: [Bobenko Suris 07]    Let $~f : \Z^2 \rightarrow \R\mathrm{P}^n~$ be a BS-Kœnigs net.
Let $~g : F(\Z^2) \rightarrow \R\mathrm{P}^n$ be the net of diagonal intersection points of $f$.
Then $g$ is a D-Kœnigs net.
Remark:    [Steinmeier 18] The reverse construction is also possible (D-Kœnigs to BS-Kœnigs).

Theorem:    [ADT25+] The two discrete Laplace invariants on dual edges of $f$ and $g$ satisfy \[ H^1(f) \cdot H^2(g) = 1, \qquad H^2(f) \cdot H^1(g) = 1. \]
Kœnigs binets
Definition:   A Kœnigs binet is a conjugate binet $~b : \Z^2 \cup F(\Z^2) \rightarrow \R\mathrm{P}^n~$such that
at every cross (edge and dual edge) the Laplace invariants satisfy \[ H^1 \cdot H^2 = 1. \]
Example:    Pairs of BS-Kœnigs nets and D-Kœnigs nets.

Theorem:    [ADT25+] Let $~ b : \Z^2 \cup F(\Z^2) \rightarrow \R\mathrm{P}^n~$ be a Kœnigs binet.
Then $b|_{\Z^2}$ is a BS-Kœnigs net $~\Leftrightarrow~$ $b|_{F(\Z^2)}$ is a D-Kœnigs net.
Kœnigs binets: Christoffel dual
Definition:    Let $~b, b^* : \Z^2 \cup F(\Z^2) \rightarrow \R^n ~$ be two conjugate binets.
Then $b^*$ is called Christoffel dual binet of $b$ if there exists $~\nu : E(\Z^2) \rightarrow \R\setminus \{0\} ~$ such that
\[ \Delta_1 b^* = \frac{1}{\nu^2} \Delta_1 b,\qquad \Delta_2 b^* = -\frac{1}{\nu^2} \Delta_2 b \] at every cross (pair of edge and dual edge).
Closing condition for Christoffel dual binet
$ \Leftrightarrow\quad H^1 \cdot H^2 = 1. $
Theorem:    [Dellinger 22, ADT25+]
A conjugate binet $b$ has a Christoffel dual binet if and only if $b$ is a Kœnigs binet.

  • 2 degrees of freedom (scaling factor at 2 crosses) / 1 degree of freedom up to global scaling
Christoffel dual of a binet comes as a 1-parameter family of binets.


  • How are binets in the Christoffel dual family related?
Definition:    Let $~b, \hat b : \Z^2 \cup F(\Z^2) \rightarrow \R^n ~$ be two conjugate binets.
Then $b$ and $\hat b$ are called Christoffel equivalent if there exists $~\nu : E(\Z^2) \rightarrow \R\setminus \{0\} ~$ such that
\[ \Delta_1 \hat b = \frac{1}{\nu^2} \Delta_1 b,\qquad \Delta_2 \hat b = \frac{1}{\nu^2} \Delta_2 b \] at every cross (pair of edge and dual edge).
Theorem:[ADT25+]
Two Christoffel dual binets of a Kœnigs binet are Christoffel equivalent.
Every Christoffel dual of a Kœnigs binet has a 1-parameter family of Christoffel equivalent Christoffel dual binets.


  • Christoffel dual binets come in pairs of 1-parameter families of Christoffel equivalent binets.
Theorem:    [ADT25+]
A conjugate binet $b$ has a Christoffel equivalent binet if and only if $b$ is a Kœnigs binet.
  • Conjugate binets which are Christoffel equivalent are conformal Combescure transforms.
    Such transformations do not exist in the smooth case.
Multi-dimensional consistency of Kœnigs binets
Theorem:[ADT25+]
Kœnigs binets on $\Z^N$ are a consistent reduction of "conjugate binets" on $\Z^N$ (different definition).

Part 3
Isothermic Binets
Isothermic binets
Definition:
A binet $D \rightarrow \R^3$ is called isothermic binet if it is a principal binet and a Kœnigs binet.


Example:
S-conical nets (conical and BS-Kœnigs) are isothermic binets.

Question:
How to incorporate other classical discretizations of isothermic surfaces?
E.g. circular isothermic nets (circular and BS-Kœnigs).
The end

Thank you!

  • [AT24] Principal binets
    Affolter, T.
  • [ADT25+] Kœnigs binets
    Affolter, Dellinger, T.