Kœnigs binets: Christoffel dual
Definition:
Let $~b, b^* : \Z^2 \cup F(\Z^2) \rightarrow \R^n ~$ be two conjugate binets.
Then $b^*$ is called Christoffel dual binet of $b$
if there exists $~\nu : E(\Z^2) \rightarrow \R\setminus \{0\} ~$ such that
\[
\Delta_1 b^* = \frac{1}{\nu^2} \Delta_1 b,\qquad
\Delta_2 b^* = -\frac{1}{\nu^2} \Delta_2 b
\]
at every cross (pair of edge and dual edge).
Closing condition for Christoffel dual binet
$
\Leftrightarrow\quad H^1 \cdot H^2 = 1.
$
Theorem: [Dellinger 22, ADT25+]
A conjugate binet $b$ has a Christoffel dual binet
if and only if $b$ is a Kœnigs binet.
-
2 degrees of freedom (scaling factor at 2 crosses) / 1 degree of freedom up to global scaling
Christoffel dual of a binet comes as a 1-parameter family of binets.
-
How are binets in the Christoffel dual family related?
Definition:
Let $~b, \hat b : \Z^2 \cup F(\Z^2) \rightarrow \R^n ~$ be two conjugate binets.
Then $b$ and $\hat b$ are called Christoffel equivalent
if there exists $~\nu : E(\Z^2) \rightarrow \R\setminus \{0\} ~$ such that
\[
\Delta_1 \hat b = \frac{1}{\nu^2} \Delta_1 b,\qquad
\Delta_2 \hat b = \frac{1}{\nu^2} \Delta_2 b
\]
at every cross (pair of edge and dual edge).
Theorem:[ADT25+]
Two Christoffel dual binets of a Kœnigs binet are Christoffel equivalent.
Every Christoffel dual of a Kœnigs binet has a 1-parameter family of Christoffel equivalent Christoffel dual binets.
-
Christoffel dual binets come in pairs of 1-parameter families of Christoffel equivalent binets.
Theorem: [ADT25+]
A conjugate binet $b$ has a Christoffel equivalent binet
if and only if $b$ is a Kœnigs binet.
-
Conjugate binets which are Christoffel equivalent are conformal Combescure transforms.
Such transformations do not exist in the smooth case.