Kœnigs binets: Christoffel dual
	  
	  
	  
	    Definition:   
	    
	      Let $~b, b^* : \Z^2 \cup F(\Z^2) \rightarrow \R^n ~$ be two conjugate binets.
	      Then $b^*$ is called Christoffel dual binet of $b$
	      if there exists $~\nu : E(\Z^2) \rightarrow \R\setminus \{0\} ~$ such that
	      \[
	      \Delta_1 b^* = \frac{1}{\nu^2} \Delta_1 b,\qquad
	      \Delta_2 b^* = -\frac{1}{\nu^2} \Delta_2 b
	      \]
	      at every cross (pair of edge and dual edge).
	    
	  
	   
	  
	  
	    
	      Closing condition for Christoffel dual binet
	    
	    
	      $
	      \Leftrightarrow\quad H^1 \cdot H^2 = 1.
	      $
	    
	    
	    
	      Theorem:     [Dellinger 22, ADT25+]
	      
		A conjugate binet $b$ has a Christoffel dual binet
		if and only if $b$ is a Kœnigs binet.
	      
	    
	    
	    
	      
		- 
		  2 degrees of freedom (scaling factor at 2 crosses) / 1 degree of freedom up to global scaling
		
 
	  
	  
	    
	      Christoffel dual of a binet comes as a 1-parameter family of binets.
	    
	    
	    
	    
	    
	      
		- 
		  How are binets in the Christoffel dual family related?
		
 
	  
	  
	    
	      Definition:   
	      
		Let $~b, \hat b : \Z^2 \cup F(\Z^2) \rightarrow \R^n ~$ be two conjugate binets.
		Then $b$ and $\hat b$ are called Christoffel equivalent
		if there exists $~\nu : E(\Z^2) \rightarrow \R\setminus \{0\} ~$ such that
		\[
		\Delta_1 \hat b = \frac{1}{\nu^2} \Delta_1 b,\qquad
		\Delta_2 \hat b = \frac{1}{\nu^2} \Delta_2 b
		\]
		at every cross (pair of edge and dual edge).
	      
	    
	     
	    
	      Theorem:[ADT25+]
	      Two Christoffel dual binets of a Kœnigs binet are Christoffel equivalent.
	      
	    
	  
	  
	  
	    
	      Every Christoffel dual of a Kœnigs binet has a 1-parameter family of Christoffel equivalent Christoffel dual binets.
	    
	    
	    
	    
	    
	      
		- 
		  Christoffel dual binets come in pairs of 1-parameter families of Christoffel equivalent binets.
		
 
	  
	  
	    
	      Theorem:     [ADT25+]
	      
		A conjugate binet $b$ has a Christoffel equivalent binet
		if and only if $b$ is a Kœnigs binet.
	      
	    
	     
	    
	      - 
		Conjugate binets which are Christoffel equivalent are conformal Combescure transforms.
 Such transformations do not exist in the smooth case.