 
	       
	       
	     
	       
	       
	       
	       
	     
	       
	       
	       
	       
	       
	       
	       
	       
	       
	     
	       
	     
	       
	     
	     
	     
	     
	     
	       
	       
	       
	       
	       
	     
	       
	       
	      
	      
	      
	    | 
		    Theorem: Let $~ b : D \rightarrow \R^3\,$ be an orthogonal binet. Then there exists a lift $~b_{\mathcal{M}} : D \rightarrow \R P^4$ such that \[ \begin{aligned} &\pi_{\mathbf{B}} \circ b_{\mathcal{M}}= b\\ &b_{\mathcal{M}}(v) \perp b_{\mathcal{M}}(f) \end{aligned} \] |       | 
 
	       
	       
	     
	       
	       
	     
	       
	       
	     
	       
	       
	       
	    | 
		    Theorem: Let $~b : D \rightarrow \mathrm{Planes}(\R^3)$ be an orthogonal bi*net. Then there exists a lift $~b_{\mathcal{B}} : D \rightarrow \R\mathrm{P}^4$ such that \[ \begin{aligned} &\pi_{\mathbf{M}} \circ b_{\mathcal{B}}= b\\ &b_{\mathcal{B}}(v) \perp b_{\mathcal{B}}(f) \end{aligned} \] |           | 
 
	       
	       
	       
	       
 
	    | Definition: A binet $~ b : D \rightarrow \R^3 ~$ is called conjugate $\Leftrightarrow$ $b|_V$ and $b|_F$ are Q-nets. |     | 
| Definition: A bi*net $~ b : D \rightarrow \mathrm{Planes}(\R^3) ~$ is called conjugate $\Leftrightarrow$ $b|_V$ and $b|_F$ are Q*-nets. |     | 
 
	       
	       
	       
	     
	       
	     
	       
	       
	     
	       
	    |       |     | 
| 		  
		      \[
		      \bigvee_{v \in f} g(v) \quad\text{is a plane for all} ~f \in F_N.
		      \qquad\qquad
		      \]
		     |   | 
| 		  
		      \[
		      \bigvee_{f \ni v} g(f) \quad\text{is a plane for all} ~v \in V_N.
		      \]
		     |             | 
 
	       
	       
	     
	       
	       
	     
	       
	       
	    |   |   | 
|     |       |